http://acm.hdu.edu.cn/showproblem.php?pid=1394
10 1 3 6 9 0 8 5 7 4 2
16
题意:给你0到n-1的随机序列,求出n种顺序变换后最小的逆序数。比如2341逆序数:2的逆序数为1,所以n=1,3的逆序数为1,所以n=1+1=2,4的逆序数为1,所以n=2+1=3,1的逆序数为0,所以2341的逆序数为n=3; 每次把第一位数放到后面去,这时3412的逆序数为4,4123的逆序数为4,1234的逆序数为0,所以所有情况下,序列最小的逆序数为n=0。
解题思路:这题暴力也会过的,而且很巧妙。但在这我描述下如何使用线段数求解。我看了好多博客后来才理解的。
利用线段树只需要计算出原始序列的逆序数,然后利用这个逆序数递推其他序列的逆序数。对于第i数 ,
他的逆序数等于已经插入到线段树中比它大的数的个数(query(1,a[i]+1,n-1)。
求出初始序列逆序数后:
例如序列 2 0 3 1 4 5 的逆序数是3,把2放到最后边以后,比2小的数(2个)的每个数的逆序数减1,比2
大的数(n-a[i]-1个)的逆序数不变,而2的逆序数变为比2大的数的个数(n-a[i]-1)。根据这个结论,我们
就可以递推出其他序列的逆序数,进而求出最小值。
<span style="font-size:18px;">#include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; const int maxn=5010; int a[maxn]; int n,ans; struct node{ int left,right,sum; }t[maxn<<2]; void build(int k,int l,int r) { t[k].left=l;t[k].right=r; t[k].sum=0; if(l==r) return; int mid=(l+r)>>1; build(k<<1,l,mid); build(k<<1|1,mid+1,r); } void update(int k,int val) { int l=t[k].left,r=t[k].right; if(l==val && val==r){ t[k].sum++; return; } int mid=(l+r)>>1; if(val<=mid) update(k<<1,val); else update(k<<1|1,val); t[k].sum=t[k<<1].sum+t[k<<1|1].sum; } void query(int k,int l,int r) { if(l==t[k].left && r==t[k].right) { ans+=t[k].sum; return; } int mid=(t[k].left+t[k].right)>>1; if(r<=mid) query(k<<1,l,r); else if(l>mid) query(k<<1|1,l,r); else{ query(k<<1,l,mid); query(k<<1|1,mid+1,r); } } int main() { while(scanf("%d",&n) != EOF) { build(1,0,n);//虽然只有到n-1,但是由于后面用到a[i]+1,为防止溢出,树区间要到n ans=0; for(int i=0;i<n;i++) { scanf("%d",&a[i]); query(1,a[i],n-1);//计算比a[i]大的数的个数。注:这些数是包含于插入a[i]前的 update(1,a[i]);//此时将a[i]插入 } int temp=ans; for(int i=0;i<n-2;i++) { ans=ans-a[i]+(n-a[i]-1); temp=min(temp,ans); } printf("%d\n",temp); } return 0; } </span>