Time Limit: 1000MS | Memory Limit: 131072K | |
Total Submissions: 12923 | Accepted: 4126 |
Description
Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.
“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”
Since Elina is new to programming, this problem is too difficult for her. Can you help her?
Input
The input contains multiple test cases. Each test cases consists of some lines.
Output
Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.
Sample Input
2 8 7 11 9
Sample Output
31
Hint
All integers in the input and the output are non-negative and can be represented by 64-bit integral types.
Source
题目说的是,给出若干组除数和余数,求能确定满足所有组的最小的数,如果不存在,输出-1
题解:
中国剩余定理,不是特别懂,无解的情况是基于拓展欧几里得...
/* http://blog.csdn.net/liuke19950717 */ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; const ll maxn=5005; void extgcd(ll a,ll b,ll &d,ll &x,ll &y) { if(!b) { d=a;x=1;y=0; return; } extgcd(b,a%b,d,y,x); y-=(a/b)*x; } ll crt(ll n,ll a[],ll r[]) { ll M=a[0],R=r[0],x,y,d; for(int i=1;i<n;++i) { extgcd(M,a[i],d,x,y); if((r[i]-R)%d) { return -1; } x=(r[i]-R)/d*x%(a[i]/d); R+=x*M; M=M/d*a[i]; R%=M; } return R>0?R:R+M; } int main() { ll n; while(~scanf("%lld",&n)) { ll a[maxn]={0},r[maxn]={0}; for(ll i=0;i<n;++i) { scanf("%lld%lld",&a[i],&r[i]); } printf("%lld\n",crt(n,a,r)); } return 0; }