RSA
Description
RSA is the best-known public key encryption algorithm. In this algorithm each participant has a private key that is shared with no one else and a public key which is published so everyone knows it. To send a secure message to this participant, you encrypt the message using the widely known public key; the participant then decrypts the messages using his or her private key. Here is the procedure of RSA:
First, choose two different large prime numbers P and Q, and multiply them to get N (= P * Q). Second, select a positive integer E (0 < E < N) as the encryption key such that E and T= (P - 1) * (Q - 1) are relatively prime. Third, compute the decryption key D such that 0 <= D < T and (E * D) mod T = 1. Here D is a multiplicative inverse of E, modulo T. Now the public key is constructed by the pair {E, N}, and the private key is {D, N}. P and Q can be discarded. Encryption is defined by C = (M ^ E) mod N, and decryption is defined by M = (C ^ D) mod N, here M, which is a non-negative integer and smaller than N, is the plaintext message and C is the resulting ciphertext. To illustrate this idea, let’s see the following example: We choose P = 37, Q = 23, So N = P * Q = 851, and T = 792. If we choose E = 5, D will be 317 ((5 * 317) mod 792 = 1). So the public key is {5, 851}, and the private key is {317, 851}. For a given plaintext M = 7, we can get the ciphertext C = (7 ^ 5) mod 851 = 638. As we have known,for properly choosen very large P and Q, it will take thousands of years to break a key, but for small ones, it is another matter. Now you are given the ciphertext C and public key {E, N}, can you find the plaintext M? Input
The input will contain several test cases. Each test case contains three positive integers C, E, N (0 < C < N, 0 < E < N, 0 < N < 2 ^ 62).
Output
Output the plaintext M in a single line.
Sample Input 638 5 851 Sample Output 7 Source
POJ Monthly,static
|
一道数论的模板题,做法很简单,但是需要一个比较复杂的证明。
关于RSA请参考http://en.wikipedia.org/wiki/RSA_(algorithm)
算法举例:
我们只要模拟这一过程即可。
#include <cstdio> #include <cmath> #include <algorithm> #include <iostream> #include <cstring> #include <map> #include <string> #include <stack> #include <cctype> #include <vector> #include <queue> #include <set> #include <utility> #include <cassert> using namespace std; ///#define Online_Judge #define outstars cout << "***********************" << endl; #define clr(a,b) memset(a,b,sizeof(a)) #define lson l , mid , rt << 1 #define rson mid + 1 , r , rt << 1 | 1 #define mk make_pair #define FOR(i , x , n) for(int i = (x) ; i < (n) ; i++) #define FORR(i , x , n) for(int i = (x) ; i <= (n) ; i++) #define REP(i , x , n) for(int i = (x) ; i > (n) ; i--) #define REPP(i ,x , n) for(int i = (x) ; i >= (n) ; i--) const int MAXN = 40000 + 50; const int MAXS = 10000 + 50; const int sigma_size = 26; const long long LLMAX = 0x7fffffffffffffffLL; const long long LLMIN = 0x8000000000000000LL; const int INF = 0x7fffffff; const int IMIN = 0x80000000; const int inf = 1 << 30; #define eps 1e-10 const long long MOD = 1000000000 + 7; const int mod = 10007; typedef long long LL; const double PI = acos(-1.0); typedef double D; typedef pair<int , int> pii; typedef vector<int> vec; typedef vector<vec> mat; #define Bug(s) cout << "s = " << s << endl; ///#pragma comment(linker, "/STACK:102400000,102400000") #define gcc 10007 inline __int64 gcd(__int64 a , __int64 b) { if(b > a)return gcd(b , a); return b == 0 ? a : gcd(b , a % b); } inline __int64 Produce_Mod(__int64 a , __int64 b , __int64 Mod) { __int64 sum = 0; while(b > 0) { if(b & 1)sum = (sum + a) % Mod; a = (a + a) % Mod; b >>= 1; } return sum; } inline __int64 Power(__int64 a , __int64 b , __int64 Mod) { __int64 sum = 1; while(b > 0) { if(b & 1)sum = Produce_Mod(sum , a , Mod); a = Produce_Mod(a , a , Mod); b >>= 1; } return sum; } __int64 Pollard_rho(__int64 n) { int i = 1; __int64 x = rand() % (n - 1) + 1; __int64 y = x; __int64 k = 2; __int64 d; do { i++; d = gcd(n + y - x , n); if(d > 1 && d < n) { return d; } if(i == k)y = x , k *= 2; x = ((Produce_Mod(x , x , n) - gcc) % n + n) % n; }while(y != x); return n; } __int64 extgcd(__int64 a , __int64 b , LL &x , LL &y) { if(b == 0){x = 1;y = 0; return a;} __int64 d = extgcd(b , a % b , x , y); LL t = x ; x = y ; y = t - a / b * y; return d; } int main() { //ios::sync_with_stdio(false); #ifdef Online_Judge freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #endif // Online_Judge __int64 c , e , n , p , q ,m , t , d; while(~scanf("%lld%lld%lld" , &c , &e , &n)) { p = Pollard_rho(n);q = n / p; t = (p - 1) * (q - 1); LL x; extgcd(e , t , d , x); d = (d % t + t) % t; printf("%lld\n" , Power(c , d , n)); } return 0; }