NAND Flash ECC 校验原理与实现

NAND FLASH ECC校验原理与实现 收藏

参考文档: http://blogimg.chinaunix.net/blog/upfile2/080702112233.pdf

NAND FLASH ECC校验原理与实现

ECC简介
  由于NAND Flash的工艺不能保证NAND的Memory Array在其生命周 期中保持性能的可靠,因此,在NAND的生产中及使用过程中会产生坏块。为了检测数据的可靠性,在应用NAND Flash的系统中一般都会采用一定的坏 区管理策略,而管理坏区的前提是能比较可靠的进行坏区检测。
  如果操作时序和电路稳定性不存在问题的话,NAND Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出错。
  对数据的校验常用的有奇偶校验、CRC校验等,而在NAND Flash处理中,一般使用一种比较专用的校验——ECC。ECC能纠正单比特错误和检测双比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的错误不保证能检测。

ECC原理
  ECC一般每256字节原始数据生成3字节ECC校验数据,这三字节共24比特分成两部分:6比特的列校验和16比特的行校验,多余的两个比特置1,如下图所示:

NAND Flash ECC 校验原理与实现_第1张图片

  
  ECC的列校验和生成规则如下图所示:

NAND Flash ECC 校验原理与实现_第2张图片

NAND Flash ECC 校验原理与实现_第3张图片


  用数学表达式表示为:
    P4=D7(+)D6(+)D5(+)D4  P4`=D3(+)D2(+)D1(+)D0
    P2=D7(+)D6(+)D3(+)D2  P2`=D5(+)D4(+)D1(+)D0
    P1=D7(+)D5(+)D3(+)D1  P1`=D6(+)D4(+)D2(+)D0
  这里(+)表示“位异或”操作
  
  ECC的行校验和生成规则如下图所示:

NAND Flash ECC 校验原理与实现_第4张图片

  用数学表达式表示为:
    P8 = bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)bit2(+)bit1(+)bit0(+)P8
    ……………………………………………………………………………………
  这里(+)同样表示“位异或”操作
 
  当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的OOB(out-of-band)数据区中。
  当从NAND Flash中读取数据的时候,每256字节我们生成一个ECC校验和,称之为新ECC校验和。
   校验的时候,根据上述ECC生成原理不难推断:将从OOB区中读出的原ECC校验和新ECC校验和按位异或,若结果为0,则表示不存在错(或是出现了 ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠正;若3个字节异或结果中只存在1个比特位为1,表示 OOB区出错;其他情况均表示出现了无法纠正的错误。

ECC算法的实现
  static const u_char nand_ecc_precalc_table[] =
  {
    0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
    0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
    0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
    0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
    0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
    0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
    0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
    0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
    0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
    0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
    0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
    0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
    0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
    0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
    0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
    0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
  };

  // Creates non-inverted ECC code from line parity
  static void nand_trans_result(u_char reg2, u_char reg3,u_char *ecc_code)
  {
    u_char a, b, i, tmp1, tmp2;

    /* Initialize variables */
    a = b = 0x80;
    tmp1 = tmp2 = 0;

    /* Calculate first ECC byte */
    for (i = 0; i < 4; i++)
    {
      if (reg3 & a)    /* LP15,13,11,9 --> ecc_code[0] */
        tmp1 |= b;
      b >>= 1;
      if (reg2 & a)    /* LP14,12,10,8 --> ecc_code[0] */
        tmp1 |= b;
      b >>= 1;
      a >>= 1;
    }

    /* Calculate second ECC byte */
    b = 0x80;
    for (i = 0; i < 4; i++)
    {
      if (reg3 & a)    /* LP7,5,3,1 --> ecc_code[1] */
        tmp2 |= b;
      b >>= 1;
      if (reg2 & a)    /* LP6,4,2,0 --> ecc_code[1] */
        tmp2 |= b;
      b >>= 1;
      a >>= 1;
    }

    /* Store two of the ECC bytes */
    ecc_code[0] = tmp1;
    ecc_code[1] = tmp2;
  }

  // Calculate 3 byte ECC code for 256 byte block
  void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
  {
    u_char idx, reg1, reg2, reg3;
    int j;

    /* Initialize variables */
    reg1 = reg2 = reg3 = 0;
    ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;

    /* Build up column parity */
    for(j = 0; j < 256; j++)
    {

      /* Get CP0 - CP5 from table */
      idx = nand_ecc_precalc_table[dat[j]];
      reg1 ^= (idx & 0x3f);

      /* All bit XOR = 1 ? */
      if (idx & 0x40) {
        reg3 ^= (u_char) j;
        reg2 ^= ~((u_char) j);
      }
    }

    /* Create non-inverted ECC code from line parity */
    nand_trans_result(reg2, reg3, ecc_code);

    /* Calculate final ECC code */
    ecc_code[0] = ~ecc_code[0];
    ecc_code[1] = ~ecc_code[1];
    ecc_code[2] = ((~reg1) << 2) | 0x03;
  }

  // Detect and correct a 1 bit error for 256 byte block
  int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
  {
    u_char a, b, c, d1, d2, d3, add, bit, i;

    /* Do error detection */
    d1 = calc_ecc[0] ^ read_ecc[0];
    d2 = calc_ecc[1] ^ read_ecc[1];
    d3 = calc_ecc[2] ^ read_ecc[2];

    if ((d1 | d2 | d3) == 0)
    {
      /* No errors */
      return 0;
    }
    else
    {
      a = (d1 ^ (d1 >> 1)) & 0x55;
      b = (d2 ^ (d2 >> 1)) & 0x55;
      c = (d3 ^ (d3 >> 1)) & 0x54;

      /* Found and will correct single bit error in the data */
      if ((a == 0x55) && (b == 0x55) && (c == 0x54))
      {
        c = 0x80;
        add = 0;
        a = 0x80;
        for (i=0; i<4; i++)
        {
          if (d1 & c)
            add |= a;
          c >>= 2;
          a >>= 1;
        }
        c = 0x80;
        for (i=0; i<4; i++)
        {
          if (d2 & c)
            add |= a;
          c >>= 2;
          a >>= 1;
        }
        bit = 0;
        b = 0x04;
        c = 0x80;
        for (i=0; i<3; i++)
        {
          if (d3 & c)
            bit |= b;
          c >>= 2;
          b >>= 1;
        }
        b = 0x01;
        a = dat[add];
        a ^= (b << bit);
        dat[add] = a;
        return 1;
      }
      else
      {
        i = 0;
        while (d1)
        {
          if (d1 & 0x01)
            ++i;
          d1 >>= 1;
        }
        while (d2)
        {
          if (d2 & 0x01)
            ++i;
          d2 >>= 1;
        }
        while (d3)
        {
          if (d3 & 0x01)
            ++i;
          d3 >>= 1;
        }
        if (i == 1)
        {
          /* ECC Code Error Correction */
          read_ecc[0] = calc_ecc[0];
          read_ecc[1] = calc_ecc[1];
          read_ecc[2] = calc_ecc[2];
          return 2;
        }
        else
        {
          /* Uncorrectable Error */
          return -1;
        }
      }
    }

    /* Should never happen */
    return -1;
  }

你可能感兴趣的:(c,算法,Flash,table,文档)