- 极限的定义与求解(微积分前置知识)
Jean·Gunnhildr
Jean带飞你的文化课数学建模高考笔记
文章目录说明第3章极限导论3.1~43.5关于渐近线的两个常见误解3.6三明治定理第4章求解多项式的极限问题4.1x→ax\toax→a时的有理函数的极限4.2x→ax\toax→a时的平方根的极限4.3x→+∞x\to+\inftyx→+∞时的有理函数的极限4.4x→+∞x\to+\inftyx→+∞时多项式型(无理)函数的极限4.5x→−∞x\to-\inftyx→−∞时的有理函数的极限4.6
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- 【数论 二分查找】P7588 双重素数(2021 CoE-II A)|普及
闻缺陷则喜何志丹
#洛谷普及算法c++洛谷数学二分查找数论位和
本文涉及的基础知识点C++二分查找数论:质数、最大公约数、菲蜀定理双重素数(2021CoE-IIA)题目描述素数(质数)是指在大于111的自然数中,除了111和它本身以外不再有其他因数的自然数。定义双重素数为这样的素数:它的各位数字之和也是一个素数。给定一个闭区间,试确定在该区间内双重素数的个数。输入格式输入包含多组测试数据。输入第一行包含一个整数TTT,表示测试数据的组数。接下来每行一组测试数据
- 统计学基础知识点刷题(task2)
sm376624607
统计学
参考视频:可汗学院《统计学》参考书籍:《深入浅出统计学》文章目录概念1:中心极限定理概念2:置信区间概念3:伯努利分布概念4:误差范围概念5:小样本容量置信区间概念1:中心极限定理核心内容:随着抽样次数趋于∞\infty∞,样本均值的抽样分布趋近于正态分布,且该正态分布的均值为总体均值。X‾服从N(μ,σ/n)\overline{X}服从N(\mu,\sigma/\sqrt{n})X服从N(μ,σ
- 运筹说 第130期 | 对策论引言
运筹说
运筹学
通过对对策论基础知识进行梳理和总结,小编绘制了《对策论思维导图》,如下图所示,对策论章节一共包含4个小节。第1小节是对策论引言。介绍了对策论的基本概念,包含对策行为和对策论、对策现象的三要素、对策问题举例及对策的分类。第2小节是矩阵对策的基本理论。介绍了矩阵对策的纯策略、矩阵对策的混合策略和矩阵对策的基本定理。第3小节是矩阵对策的解法。分别介绍了图解法、方程组法和线性规划法3种矩阵对策的求解方法。
- Spring Boot 整合原生的 mybatis
小马不敲代码
实战springbootmybatis后端
Mybatis简介MyBatis是一款优秀的持久层框架,它支持定制化SQL、存储过程以及高级映射。MyBatis避免了几乎所有的JDBC代码和手动设置参数以及获取结果集的工作。MyBatis可以使用简单的XML或注解来配置和映射原生信息,将接口和Java的POJOs(PlainOldJavaObjects,普通的Java对象)映射成数据库中的记录。核心特点1、简化数据库操作:MyBatis通过XM
- Java实现的登录功能(三层架构,验证,拦截)
浪九天
Javajspservlet
Java实现的登录功能(三层架构,验证,拦截)1、pojo:实体类packagecom.pojo;publicclassUser{privateintid;privateStringname;privateStringpassword;publicUser(){}publicUser(Stringname,Stringpassword){this.name=name;this.password=p
- 线性代数导引:实系数和复系数不可约多项式
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
线性代数导引:实系数和复系数不可约多项式关键词:线性代数、实系数多项式、复系数多项式、不可约多项式、代数学基本定理、伽罗瓦理论1.背景介绍1.1问题的由来多项式是数学中一个基础而重要的概念,它不仅在代数学中有着广泛的应用,在几何、物理等领域也有着重要的地位。而研究多项式的可约性,尤其是实系数和复系数多项式的不可约性,对于理解多项式的本质特征具有重要意义。1.2研究现状目前对于实系数和复系数多项式的
- 线代[8]|北大丘维声教授《怎样学习线性代数?》(红色字体为博主注释)
汉密士20240101
线性代数【精品】丘维声学习线性代数高等代数
文章目录说明一、线性代数的内容简介二、学习线性代数的用处三、线性代数的特点四、学习线性代数的方法五、更新时间记录说明文章中红色字体为博主敲录完丘教授这篇文章后所加,刷到这篇文章的读者在首次阅读应当跳过红色字体,先通读一读文章全文,一遍,两遍,甚至是三遍以上。该篇文章为大学工科专业线性代数课程脉络的梳理性质文章,仅仅到“二次型”为止与考研大纲相同,并未涉及“哈密顿—凯莱定理、奇异值分解(SVD)、广
- Spring MVC 对象转换器:初级开发者入门指南
干中学26
springmvcjava
SpringMVC对象转换器:初级开发者入门指南为什么需要对象转换器?在Web应用中,我们经常需要处理不同类型的对象。例如:前端数据到后端对象:用户通过表单提交的数据通常是HttpServletRequest对象,我们需要将其转换为Java对象(如POJO)以便进行业务处理。后端对象到前端展示:在将数据返回给前端时,可能需要将Java对象转换为适合前端展示的格式(如JSON或XML)。对象转换是一
- 设计一个高并发的系统,如何保证数据一致性?
weixin_49526058
面试后端高并发
设计高并发系统时,保证数据一致性是一个非常重要的挑战,尤其是在分布式环境中。以下是一些常见的策略和方法来保证数据一致性:1.CAP定理CAP定理表明,在一个分布式系统中,不能同时满足以下三个要求:Consistency(数据一致性):所有节点在同一时间看到相同的数据。Availability(可用性):每个请求都会得到响应,无论请求是否成功。PartitionTolerance(分区容忍性):即使
- 朴素贝叶斯原理及sklearn中代码实战
Lewis@
sklearn概率论机器学习
朴素贝叶斯(NaiveBayes)是一类基于贝叶斯定理的简单而有效的分类算法。它假设特征之间是相互独立的,即在给定目标变量的情况下,每个特征都不依赖于其他特征。尽管这个假设在实际中很难成立,朴素贝叶斯在许多场景下仍表现得非常好,特别是对于文本分类等高维数据的应用。1.贝叶斯定理贝叶斯定理表明给定一个事件发生的条件下另一个事件发生的概率:P(A∣B)=P(B∣A)⋅P(A)P(B){P(A|B)=\
- lombok在高版本idea中注解不生效的解决
L_!!!
springbootmavenjava服务器前端
环境:IntelliJIDEA2024.3.1.1+SpringBoot+Maven问题描述使用@AllArgsConstructor注解一个用户类,然后调用全参构造方法创建对象,出现错误:java:无法将类com.itheima.pojo.User中的构造器User应用到给定类型; 需要:没有参数 找到: java.lang.Integer,java.lang.String,java.lang
- 分布式数据库解析
qcidyu
文章归档数据分片高可用架构云数据库共识算法全球一致性分布式事务CAP定理
title:分布式数据库解析date:2025/2/20updated:2025/2/20author:cmdragonexcerpt:通过金融交易、社交平台、物联网等9大真实场景,结合GoogleSpanner跨洲事务、DynamoDB毫秒级扩展等38个生产级案例,揭示分布式数据库的核心原理与工程实践。内容涵盖CAP定理的动态权衡策略、Paxos/Raft协议的工程实现差异、TrueTime时钟
- 分布式理论与分布式算法
红衣女妖仙
springcloud分布式分布式定理分布式算法
分布式定义、主要目标、优缺点、与集中式区别;分布式CAP定理、PACELC理论、BASE理论的核心观点、应用场景等;分布式算法如Paxos算法、Raft算法、Gossip算法、两阶段提交(2PC)、三阶段提交(3PC)、一致性哈希算法、Bully算法、Chord算法等算法的核心思想、角色、算法过程、特性、应用场景和变种等。——2025年2月3日甲辰年正月初六立春目录1分布式1.1分布式定义1.
- c语言正整数幂尾数循环问题(同余定理)
ᴅᴜᴅ
算法
众所周知,2的正整数次幂最后一位数总是不断的在重复2,4,8,6,2,4,8,6…2,4,8,6,2,4,8,6…我们说2的正整数次幂最后一位的循环长度是4(实际上4的倍数都可以说是循环长度,但我们只考虑最小的循环长度)这时乐乐的问题就出来了:是不是只有最后一位才有这样的循环呢?对于一个整数n的正整数次幂来说,它的后L(L=1,2)位是否会发生循环?如果循环的话,循环长度是多少呢?注意:如果n的某
- Java 集成MySQL+MyBatis实战(含代码)
C_V_Better
javamysql架构设计javamysqlmybatis后端数据库
在Java开发中,MyBatis是一个功能强大的持久层框架,它支持定制化SQL、存储过程以及高级映射。MyBatis避免了几乎所有的JDBC代码和手动设置参数以及获取结果集。MyBatis使用简单的XML或注解用于配置和原始映射,将接口和Java的POJOs映射成数据库中的记录。本文将通过实战案例,详细展示如何使用MyBatis集成MySQL,实现对数据库的增删改查操作。一、环境准备在开始编写代码
- matlab中功率因数怎样测量,如何测量功率因数?功率因数测量方法
liubotian1995
matlab中功率因数怎样测量
功率因数测量方法有:1、功率因数表法直接测量。用功率因数表直接测即可。这样测量到的瞬时功率因数值。2、功率法测量:测量负载的有功功率和无功功率(也有测视在功率的),在用勾股定理或三角函数计算出功率因数,这是依据功率因数的定义得出的测量方法。数据也是瞬时功率因数值。3、电量法测量:供电局使用的方法,抄录当期用电的有功电量和无功电量数据,用三角函数计算出功率因数值。这是当期的平均功率因数值。我们都知道
- 四平方和(多种解法)
delim6
算法数据结构哈希算法c++
注意,会列举过不了的一些思路四平方和四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多44个正整数的平方和。如果把0包括进去,就正好可以表示为4个数的平方和。比如:5=0^2+0^2+1^2+2^27=1^2+1^2+1^2+2^2对于一个给定的正整数,可能存在多种平方和的表示法。要求你对4个数排序:0≤a≤b≤c≤d并对所有的可能表示法按a,b,c,d为联合主键升序排列,最后输出第一个
- 朴素贝叶斯模型在文本分类中的应用
Ash Butterfield
nlp分类数据挖掘人工智能
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,广泛应用于文本分类任务中。它的核心思想是根据训练数据中不同类别的条件概率,预测新文本属于哪个类别。尽管其假设条件较为简单(假设特征之间相互独立),但朴素贝叶斯在许多实际应用中仍表现出色,特别是在处理文本分类任务时。本文将介绍朴素贝叶斯模型的基本原理、在文本分类中的应用以及其优缺点,并通过示例说明其具体实现。1.朴素贝叶斯模型的基
- CAP与BASE:分布式系统设计的灵魂与妥协
后端java分布式
CAP理论CAP理论起源于2000年,由加州大学伯克利分校的EricBrewer教授在分布式计算原理研讨会(PODC)上提出,因此CAP定理又被称作布鲁尔定理(Brewer’stheorem)2年后,麻省理工学院的SethGilbert和NancyLynch发表了布鲁尔猜想的证明,CAP理论正式成为分布式领域的定理。简介CAP也就是Consistency(一致性)、Availability(可用性
- C# 使用余弦定理寻找三角形第三边的程序(Program to find third side of triangle using law of cosines)
csdn_aspnet
C#c#开发语言
给定两条边A、B和角C。利用余弦定理求出三角形的第三边。示例:输入:a=5,b=8,c=49输出:6.04339具体来说,当你知道三角形两条边的长度和中间的角度时,余弦定理可以用来求出三角形第三边的长度。参见此处了解如何求余弦值。假设a、b、c是三角形的边,其中c是角C对面的边。然后,c^2=a^2+b^2-2*a*b*cos(c)或c=sqrt(a^2+b^2-2*a*b*cos(c))示例代码
- 软件架构设计分层架构与 PO、VO、DTO、BO、POJO、BO/DO、DAO
s_nshine
架构povodto高内聚低耦合
某位计算机大师说过:计算机科学领域任何问题,都可以间接的通过添加一个中间层来解决.什么是架构?先引用《系统架构:复杂系统的产品设计与开发》里面的一句话:结构良好的创造活动要优于毫无结构的创造活动。架构始于建筑,是因为人类发展(原始人自给自足住在树上,也就不需要架构),分工协作的需要,将目标系统按某个原则进行切分,切分的原则,是要便于不同的角色进行并行工作。一般而言,软件系统的架构(Architec
- 图论练习题(存起来练)
Wuliwuliii
图论练习题
=============================以下是最小生成树+并查集======================================【HDU】1213HowManyTables基础并查集★1272小希的迷宫基础并查集★1325&&poj1308IsItATree?基础并查集★1856Moreisbetter基础并查集★1102ConstructingRoads基础最小生成
- 【HDOJ图论题集】【转】
aiyuneng5167
java人工智能
1=============================以下是最小生成树+并查集======================================2【HDU】31213HowManyTables基础并查集★41272小希的迷宫基础并查集★51325&&poj1308IsItATree?基础并查集★61856Moreisbetter基础并查集★71102ConstructingRoad
- 图论500题
Dillonh
迷之图论
PS:没找到这套题的原作者,非常感谢他的总结~最小生成树+并查集【HDU】1213HowManyTables基础并查集★1272小希的迷宫基础并查集★1325&&poj1308IsItATree?基础并查集★1856Moreisbetter基础并查集★1102ConstructingRoads基础最小生成树★1232畅通工程基础并查集★1233还是畅通工程基础最小生成树★1863畅通工程基础最小生
- (转)@JsonRawValue 按原样序列化属性
SomeOtherTime
java开发语言后端
@JsonRawValue按原样序列化属性_赵丙双的博客-CSDN博客_序列化属性@JsonRawValue注解能够按原样序列化属性。属性值不会被转义或者加引号(或者说,会自动去掉转义,多余的引号)。属性值已经是一个JSONString,或者属性值已经被加了引号时很有用。ExamplePOJOpublicclassReport{privatelongid;privateStringname;@Js
- poj 1142 Smith Numbers(数论:欧拉函数变形)
殷华
数学/数论
给定一个数n找出大于n的最小smith数smith数定义如下:一个数n为smith数当且仅当它的所有质因子各位数之和等于n的所有位数之和且n不是素数那么给定一个n,我们就可以每次+1判断是否为smith数这道题唯一的难点就在于找到一个数的所有素数因子套用欧拉函数变形即可375ms代码如下:#include#include#defineLLlonglongLLn;intget_ans(LLn){in
- 【论文解读】神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界
神经美学茂森
无痛入门神经网络神经网络网络人工智能
K.Hornik,M.Stinchcombe,andH.White.Multilayerfeed-forwardnetworksareuniversalapproximators.NeuralNet-works,2(5):359-366,1989论文解读神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界第一节:通俗解释——万能近似定理的核心思想万能近似定理(UniversalAp
- 【数论】—— 素数
Tom_wsc
数论算法
素数定义因数只有111和这个数本身的数被称作素数。注意:111既不是素数也不是合数,222是最小的素数。两个关于素数的定理唯一分解定理对于任意大于111的整数xxx,都可以分解成若干个素数的乘积:x=p1a1×p2a2×p3a3×⋯×pnan(ai∈Z+)x=p_1^{a_1}\timesp_2^{a_2}\timesp_3^{a_3}\times\cdots\timesp_n^{a_n}(a_i
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro