题意就是两个数组A,B其中B[i] = A[i%n],B有l个元素,A有n个元素。
从B中选取x个元素,相邻元素在B中的下标满足Ij/n + 1 == I[j+1]/n。
可以用dp[i][j]表示第i个数选的是j,那么dp[i][j] = ∑dp[i-1][t] && t <= j。
数字比较大,得先离散化一下,且要用滚动数组。。。。
/***************************************** Author :Crazy_AC(JamesQi) Time :2016 File Name : *****************************************/ // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <iomanip> #include <sstream> #include <string> #include <stack> #include <queue> #include <deque> #include <vector> #include <map> #include <set> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <climits> using namespace std; #define MEM(x,y) memset(x, y,sizeof x) #define pk push_back typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> ii; typedef pair<ii,int> iii; const double eps = 1e-10; const int inf = 1 << 30; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; LL dp[2][1000010]; LL a[1000010],b[1000010]; int n, k; LL l; int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); cin >> n >> l >> k; for (int i = 1;i <= n;++i) { // cin >> a[i]; scanf("%I64d",&a[i]); b[i] = a[i]; } sort(b + 1,b + 1 + n); int cnt = unique(b + 1,b + 1 + n) - b; for (int i = 1;i <= n;++i) { a[i] = lower_bound(b + 1,b + cnt, a[i]) - b; // cout << a[i] << ' '; } // cout << endl; int now = 1, la = 0; dp[now][0] = 1; LL ans = 0; LL seg = l / n; for (int i = 1;i <= k && i <= seg + 1;++i) { swap(la, now); for (int j = 0;j <= cnt;++j) dp[now][j] = 0; for (int j = 1;j <= cnt;++j) dp[la][j] = (dp[la][j-1] + dp[la][j]) % MOD; for (int j = 1;j <= n;++j) dp[now][a[j]] = (dp[now][a[j]] + dp[la][a[j]]) % MOD; for (int j = 1;j <= cnt;++j) ans = (ans + (seg - i + 1)%MOD * dp[now][j]%MOD) % MOD; for (int j = 1;j <= l - seg*n;++j) ans = (ans + dp[la][a[j]]) % MOD; } cout << ans << endl; return 0; }