TrackerKCF继承与跟踪基类Tracker
Tracker的两个函数init,update调用的是initImpl和updateImpl,每个子类对应这各自的initImpl和updateImpl实现.在TrackerKCF类的定义在trackerKCF.cpp中有这样一个类
TrackerKCFImpl ,继承于TrackerKCF ,KCF的初始化init和更新update在这个类里实现
class TrackerKCFImpl : public TrackerKCF { public: TrackerKCFImpl( const TrackerKCF::Params ¶meters = TrackerKCF::Params() ); void read( const FileNode& /*fn*/ ); void write( FileStorage& /*fs*/ ) const; void setFeatureExtractor(void (*f)(const Mat, const Rect, Mat&), bool pca_func = false); protected: /* * basic functions and vars */ bool initImpl( const Mat& /*image*/, const Rect2d& boundingBox ); bool updateImpl( const Mat& image, Rect2d& boundingBox ); TrackerKCF::Params params; /* * KCF functions and vars 具体算法实现需要用到的一些小函数 */ void createHanningWindow(OutputArray dest, const cv::Size winSize, const int type) const; void inline fft2(const Mat src, std::vector<Mat> & dest, std::vector<Mat> & layers_data) const; void inline fft2(const Mat src, Mat & dest) const; void inline ifft2(const Mat src, Mat & dest) const; void inline pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB=false) const; void inline sumChannels(std::vector<Mat> src, Mat & dest) const; void inline updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & proj_matrix,double pca_rate, int compressed_sz, std::vector<Mat> & layers_pca,std::vector<Scalar> & average, Mat pca_data, Mat new_cov, Mat w, Mat u, Mat v) const; void inline compress(const Mat proj_matrix, const Mat src, Mat & dest, Mat & data, Mat & compressed) const; bool getSubWindow(const Mat img, const Rect roi, Mat& feat, Mat& patch, TrackerKCF::MODE desc = GRAY) const; bool getSubWindow(const Mat img, const Rect roi, Mat& feat, void (*f)(const Mat, const Rect, Mat& )) const; void extractCN(Mat patch_data, Mat & cnFeatures) const; void denseGaussKernel(const double sigma, const Mat , const Mat y_data, Mat & k_data, std::vector<Mat> & layers_data,std::vector<Mat> & xf_data,std::vector<Mat> & yf_data, std::vector<Mat> xyf_v, Mat xy, Mat xyf ) const; void calcResponse(const Mat alphaf_data, const Mat kf_data, Mat & response_data, Mat & spec_data) const; void calcResponse(const Mat alphaf_data, const Mat alphaf_den_data, const Mat kf_data, Mat & response_data, Mat & spec_data, Mat & spec2_data) const; void shiftRows(Mat& mat) const; void shiftRows(Mat& mat, int n) const; void shiftCols(Mat& mat, int n) const; private: double output_sigma; Rect2d roi; Mat hann; //hann window filter Mat hann_cn; //10 dimensional hann-window filter for CN features, Mat y,yf; // training response and its FFT Mat x; // observation and its FFT Mat k,kf; // dense gaussian kernel and its FFT Mat kf_lambda; // kf+lambda Mat new_alphaf, alphaf; // training coefficients Mat new_alphaf_den, alphaf_den; // for splitted training coefficients Mat z; // model Mat response; // detection result Mat old_cov_mtx, proj_mtx; // for feature compression // pre-defined Mat variables for optimization of private functions Mat spec, spec2; std::vector<Mat> layers; std::vector<Mat> vxf,vyf,vxyf; Mat xy_data,xyf_data; Mat data_temp, compress_data; std::vector<Mat> layers_pca_data; std::vector<Scalar> average_data; Mat img_Patch; // storage for the extracted features, KRLS model, KRLS compressed model Mat X[2],Z[2],Zc[2]; // storage of the extracted features std::vector<Mat> features_pca; std::vector<Mat> features_npca; std::vector<MODE> descriptors_pca; std::vector<MODE> descriptors_npca; // optimization variables for updateProjectionMatrix Mat data_pca, new_covar,w_data,u_data,vt_data; // custom feature extractor bool use_custom_extractor_pca; bool use_custom_extractor_npca; std::vector<void(*)(const Mat img, const Rect roi, Mat& output)> extractor_pca; std::vector<void(*)(const Mat img, const Rect roi, Mat& output)> extractor_npca; bool resizeImage; // resize the image whenever needed and the patch size is large int frame; };下面看init的实现
/* * Initialization: * - creating hann window filter * - ROI padding * - creating a gaussian response for the training ground-truth * - perform FFT to the gaussian response */ bool TrackerKCFImpl::initImpl( const Mat& /*image*/, const Rect2d& boundingBox ){ frame=0; roi = boundingBox; //calclulate output sigma output_sigma=sqrt(roi.width*roi.height)*params.output_sigma_factor; output_sigma=-0.5/(output_sigma*output_sigma); //resize the ROI whenever needed if(params.resize && roi.width*roi.height>params.max_patch_size){ resizeImage=true; roi.x/=2.0; roi.y/=2.0; roi.width/=2.0; roi.height/=2.0; } // add padding to the roi roi.x-=roi.width/2; roi.y-=roi.height/2; roi.width*=2; roi.height*=2; // initialize the hann window filter createHanningWindow(hann, roi.size(), CV_64F); // hann window filter for CN feature Mat _layer[] = {hann, hann, hann, hann, hann, hann, hann, hann, hann, hann}; merge(_layer, 10, hann_cn); // create gaussian response y=Mat::zeros((int)roi.height,(int)roi.width,CV_64F); for(unsigned i=0;i<roi.height;i++){ for(unsigned j=0;j<roi.width;j++){ y.at<double>(i,j)=(i-roi.height/2+1)*(i-roi.height/2+1)+(j-roi.width/2+1)*(j-roi.width/2+1); } } y*=(double)output_sigma; cv::exp(y,y); // perform fourier transfor to the gaussian response fft2(y,yf); model=Ptr<TrackerKCFModel>(new TrackerKCFModel(params)); // record the non-compressed descriptors if((params.desc_npca & GRAY) == GRAY)descriptors_npca.push_back(GRAY); if((params.desc_npca & CN) == CN)descriptors_npca.push_back(CN); if(use_custom_extractor_npca)descriptors_npca.push_back(CUSTOM); features_npca.resize(descriptors_npca.size()); // record the compressed descriptors if((params.desc_pca & GRAY) == GRAY)descriptors_pca.push_back(GRAY); if((params.desc_pca & CN) == CN)descriptors_pca.push_back(CN); if(use_custom_extractor_pca)descriptors_pca.push_back(CUSTOM); features_pca.resize(descriptors_pca.size()); // accept only the available descriptor modes CV_Assert( (params.desc_pca & GRAY) == GRAY || (params.desc_npca & GRAY) == GRAY || (params.desc_pca & CN) == CN || (params.desc_npca & CN) == CN || use_custom_extractor_pca || use_custom_extractor_npca ); // TODO: return true only if roi inside the image return true; }
bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){ double minVal, maxVal; // min-max response Point minLoc,maxLoc; // min-max location Mat img=image.clone(); // check the channels of the input image, grayscale is preferred CV_Assert(img.channels() == 1 || img.channels() == 3); // resize the image whenever needed if(resizeImage)resize(img,img,Size(img.cols/2,img.rows/2)); // detection part if(frame>0){ // extract and pre-process the patch // get non compressed descriptors for(unsigned i=0;i<descriptors_npca.size()-extractor_npca.size();i++){ if(!getSubWindow(img,roi, features_npca[i], img_Patch, descriptors_npca[i]))return false; } //get non-compressed custom descriptors for(unsigned i=0,j=(unsigned)(descriptors_npca.size()-extractor_npca.size());i<extractor_npca.size();i++,j++){ if(!getSubWindow(img,roi, features_npca[j], extractor_npca[i]))return false; } if(features_npca.size()>0)merge(features_npca,X[1]); // get compressed descriptors for(unsigned i=0;i<descriptors_pca.size()-extractor_pca.size();i++){ if(!getSubWindow(img,roi, features_pca[i], img_Patch, descriptors_pca[i]))return false; } //get compressed custom descriptors for(unsigned i=0,j=(unsigned)(descriptors_pca.size()-extractor_pca.size());i<extractor_pca.size();i++,j++){ if(!getSubWindow(img,roi, features_pca[j], extractor_pca[i]))return false; } if(features_pca.size()>0)merge(features_pca,X[0]); //compress the features and the KRSL model if(params.desc_pca !=0){ compress(proj_mtx,X[0],X[0],data_temp,compress_data); compress(proj_mtx,Z[0],Zc[0],data_temp,compress_data); } // copy the compressed KRLS model Zc[1] = Z[1]; // merge all features if(features_npca.size()==0){ x = X[0]; z = Zc[0]; }else if(features_pca.size()==0){ x = X[1]; z = Z[1]; }else{ merge(X,2,x); merge(Zc,2,z); } //compute the gaussian kernel denseGaussKernel(params.sigma,x,z,k,layers,vxf,vyf,vxyf,xy_data,xyf_data); // compute the fourier transform of the kernel fft2(k,kf); if(frame==1)spec2=Mat_<Vec2d >(kf.rows, kf.cols); // calculate filter response if(params.split_coeff) calcResponse(alphaf,alphaf_den,kf,response, spec, spec2); else calcResponse(alphaf,kf,response, spec); // extract the maximum response minMaxLoc( response, &minVal, &maxVal, &minLoc, &maxLoc ); roi.x+=(maxLoc.x-roi.width/2+1); roi.y+=(maxLoc.y-roi.height/2+1); // update the bounding box boundingBox.x=(resizeImage?roi.x*2:roi.x)+boundingBox.width/2; boundingBox.y=(resizeImage?roi.y*2:roi.y)+boundingBox.height/2; } // extract the patch for learning purpose // get non compressed descriptors for(unsigned i=0;i<descriptors_npca.size()-extractor_npca.size();i++){ if(!getSubWindow(img,roi, features_npca[i], img_Patch, descriptors_npca[i]))return false; } //get non-compressed custom descriptors for(unsigned i=0,j=(unsigned)(descriptors_npca.size()-extractor_npca.size());i<extractor_npca.size();i++,j++){ if(!getSubWindow(img,roi, features_npca[j], extractor_npca[i]))return false; } if(features_npca.size()>0)merge(features_npca,X[1]); // get compressed descriptors for(unsigned i=0;i<descriptors_pca.size()-extractor_pca.size();i++){ if(!getSubWindow(img,roi, features_pca[i], img_Patch, descriptors_pca[i]))return false; } //get compressed custom descriptors for(unsigned i=0,j=(unsigned)(descriptors_pca.size()-extractor_pca.size());i<extractor_pca.size();i++,j++){ if(!getSubWindow(img,roi, features_pca[j], extractor_pca[i]))return false; } if(features_pca.size()>0)merge(features_pca,X[0]); //update the training data if(frame==0){ Z[0] = X[0].clone(); Z[1] = X[1].clone(); }else{ Z[0]=(1.0-params.interp_factor)*Z[0]+params.interp_factor*X[0]; Z[1]=(1.0-params.interp_factor)*Z[1]+params.interp_factor*X[1]; } if(params.desc_pca !=0 || use_custom_extractor_pca){ // initialize the vector of Mat variables if(frame==0){ layers_pca_data.resize(Z[0].channels()); average_data.resize(Z[0].channels()); } // feature compression updateProjectionMatrix(Z[0],old_cov_mtx,proj_mtx,params.pca_learning_rate,params.compressed_size,layers_pca_data,average_data,data_pca, new_covar,w_data,u_data,vt_data); compress(proj_mtx,X[0],X[0],data_temp,compress_data); } // merge all features if(features_npca.size()==0) x = X[0]; else if(features_pca.size()==0) x = X[1]; else merge(X,2,x); // initialize some required Mat variables if(frame==0){ layers.resize(x.channels()); vxf.resize(x.channels()); vyf.resize(x.channels()); vxyf.resize(vyf.size()); new_alphaf=Mat_<Vec2d >(yf.rows, yf.cols); } // Kernel Regularized Least-Squares, calculate alphas denseGaussKernel(params.sigma,x,x,k,layers,vxf,vyf,vxyf,xy_data,xyf_data); // compute the fourier transform of the kernel and add a small value fft2(k,kf); kf_lambda=kf+params.lambda; double den; if(params.split_coeff){ mulSpectrums(yf,kf,new_alphaf,0); mulSpectrums(kf,kf_lambda,new_alphaf_den,0); }else{ for(int i=0;i<yf.rows;i++){ for(int j=0;j<yf.cols;j++){ den = 1.0/(kf_lambda.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[0]+kf_lambda.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[1]); new_alphaf.at<Vec2d>(i,j)[0]= (yf.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[0]+yf.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[1])*den; new_alphaf.at<Vec2d>(i,j)[1]= (yf.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[0]-yf.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[1])*den; } } } // update the RLS model if(frame==0){ alphaf=new_alphaf.clone(); if(params.split_coeff)alphaf_den=new_alphaf_den.clone(); }else{ alphaf=(1.0-params.interp_factor)*alphaf+params.interp_factor*new_alphaf; if(params.split_coeff)alphaf_den=(1.0-params.interp_factor)*alphaf_den+params.interp_factor*new_alphaf_den; } frame++; return true; }