POJ 1679 The Unique MST 次小生成树

题目大意就是问是否有多个权值相同的最小生成树


有两种方法, 一种是枚举删边,然后接着构造最小生成树,但是复杂度比较大

另外一种就比较好了  ,  是求次小生成树的方法, 把生成树上任意两点间的最大边在求最小生成树的同时预处理出来,然后n2的枚举任意两点,如果这两点在最小生成树中不是相邻的,就可以删掉两点间的最大边,换上新边,即他俩之间的直接的边,在邻接矩阵中就是他们的距离。

第一种方法 ,我用克鲁斯卡尔做的,很久前的代码了


#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#define LOCA
#define MAXN 1005
#define INF 100000000
#define eps 1e-7
using namespace std;
struct wwj
{
    int u, v, w;
    int equal;
    int used;
    int del;
}edge[10005];
int parent[10005], num[10005];
int n, m;
bool first;
bool cmp(wwj x, wwj y)
{
    return  x.w < y.w;
}
void init()
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= m; i++)
    {
        scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
        edge[i].del = 0; edge[i].equal = 0; edge[i].used = 0;
    }
    for(int i = 1; i <= m; i++)
    {
        for(int j = 1; j <= m; j++)
        {
            if(i == j) continue;
            if(edge[j].w == edge[i].w)
            edge[i].equal = 1;
        }
    }
    sort(edge + 1, edge + m + 1, cmp);
    first = true;
}
int find(int x)
{
    if(parent[x] == x)
    return x;
    int t = find(parent[x]);
    parent[x] = t;
    return t;
}
void join(int x, int y)
{
    int fx = find(x);
    int fy = find(y);
    if(fx != fy)
    {
        if(num[fx] > num[fy])
        {
            parent[fy] = fx;
            num[fx] += num[fy];
            num[fy] = 1;
        }
        else
        {
            parent[fx] = fy;
            num[fy] += num[fx];
            num[fx] = 1;
        }
    }
}
int kruskal()
{
    int i, sum = 0, cnt = 0, u, v;
    for(i = 1; i <= n; i++)
    parent[i] = i;
    memset(num, 1, sizeof(num));
    for(i = 1; i <= m; i++)
    {
        if(edge[i].del == 1) continue;
        u = edge[i].u;
        v = edge[i].v;
        if(find(u) != find(v))
        {
            sum += edge[i].w;
            cnt++;
            join(u, v);
            if(first) edge[i].used = 1;
        }
        if(cnt >= n - 1) break;
    }
    return sum;
}
void solve()
{
    int w1 = kruskal(), w2, i;
    first = false;
    for(i = 1; i <= m; i++)
    {
        if(edge[i].used && edge[i].equal)
        {
            edge[i].del = 1;
            w2 = kruskal();
            if(w1 == w2)
            {
                printf("Not Unique!\n");
                return;
            }
            edge[i].del = 0;
        }
    }
    if(i > m) printf("%d\n", w1);
}
int main()
{
#ifdef LOCAL
    freopen("d:/data.in","r",stdin);
    freopen("d:/data.out","w",stdout);
#endif
    int t;
    scanf("%d", &t);
    while(t--)
    {
        init();
        solve();
    }
    return 0;
}


第二种方法是用prim做的


#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#define MAXN 1005
#define MAXM 100005
#define INF 1000000000
using namespace std;
int mx[105][105];
int d[105][105];
int can[105][105];
int dis[105], used[105], near[105];
int n, m;
void init()
{
    for(int i = 1; i <= n; i++)
    {
        near[i] = 1;
        for(int j = 1; j <= n; j++)
        {
            mx[i][j] = 0;
            d[i][j] = INF;
            can[i][j] = 0;
        }
        d[i][i] = 0;
    }
    memset(used, 0, sizeof(used));
}
int main()
{
    int T, x, y, w;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d%d", &n, &m);
        init();
        for(int i = 1; i <= m; i++)
        {
            scanf("%d%d%d", &x, &y, &w);
            d[x][y] = d[y][x] = w;
        }
        for(int i = 1; i <= n; i++)
            dis[i] = d[1][i];
        used[1] = true;
        near[1] = -1;
        int sum = 0;
        for(int i = 1; i < n; i++)
        {
            int mi = INF;
            int v = -1;
            for(int j = 1; j <= n; j++)
            {
                if(near[j] != -1 && dis[j] < mi)
                {
                    v = j;
                    mi = dis[j];
                }
            }
            int pre;
            if(v != -1)
            {
                pre = near[v];
                sum += d[v][near[v]];
                can[v][near[v]] = can[near[v]][v] = 1;
                mx[near[v]][v] = mx[v][near[v]] = d[v][near[v]];
                near[v] = -1;
                for(int j = 1; j <= n; j++)
                {
                    if(near[j] != -1 && d[v][j] < dis[j])
                    {
                        dis[j] = d[v][j];
                        near[j] = v;
                    }
                }
            }
            for(int j = 1; j <= n; j++)
            {
                if(near[j] == -1 && j != v)
                {
                    mx[j][v] = mx[v][j] = max(mx[j][pre], mx[pre][v]);
                }
            }
        }
        bool flag = false;
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
            {
                if(i != j && !can[i][j] && d[i][j] < INF)
                {
                    int sum2 = sum - mx[i][j] + d[i][j];
                    if(sum2 == sum) flag = true;
                }
            }
        if(flag) printf("Not Unique!\n");
        else printf("%d\n", sum);
    }
    return 0;
}


你可能感兴趣的:(JOIN,n2)