POJ 1811 Miller_Rabin算法Pollard_Rho算法

#include <cstdio>
#include <cstring>
#include <ctime>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long LL;
LL gcd(LL A, LL B)
{
	if (!A) return 1;
	if (A < 0) A = -A;
	return B == 0 ? A : gcd(B, A % B);
}
LL MultMod(LL a, LL b, LL n)
{
	a %= n;
	b %= n;
	LL ret = 0;
	while (b)
	{
		if (b & 1)
		{
			ret += a;
			if (ret >= n) ret -= n;
		}
		a = a << 1;
		if (a >= n) a -= n;
		b = b >> 1;
	}
	return ret;
}
LL PowMod(LL a, LL n, LL m)
{
	LL ret = 1;
	a = a % m;
	while (n >= 1)
	{
		if (n & 1)
			ret = MultMod(ret, a, m);
		a = MultMod(a, a, m);
		n = n >> 1;
	}
	return ret;
}
bool Witness(LL a, LL n)
{
	LL t = 0, u = n - 1;
	while (!(u & 1))
	{
		t++;
		u /= 2;
	}
	LL x0 = PowMod(a, u, n);
	for (int i = 1; i <= t; i++)
	{
		LL x1 = MultMod(x0, x0, n);
		if (x1 == 1 && x0 != 1 && x0 != (n - 1))
			return true;
		x0 = x1;
	}
	if (x0 != 1)
		return true;
	return false;
}
bool Miller_Rabin(LL n, int t)
{
	if (n == 2) return true;
	if ((n & 1) == 0)  return false;
	srand(time(NULL));
	for (int i = 0; i < t; i++)
	{
		LL a = rand() % (n - 1) + 1;
		if (Witness(a, n))
			return false;
	}
	return true;
}
LL Pollard_Rho(LL n, LL c)
{
	LL i = 1, x = rand() % n, y = x, k = 2;
	while (1)
	{
		i++;
		x = (MultMod(x, x, n) + c) % n;
		LL d = gcd(y - x, n);
		if (d != 1 && d != n)
			return d;
		if (x == y)
			return n;
		if (i == k)
		{
			y = x;
			k *= 2;
		}
	}
}
LL ans, T, n;
void get_small(LL n, LL c)
{
	if (n == 1) return;
	if (Miller_Rabin(n, 10))
	{
		ans = min(n, ans);
		return ;
	}
	LL p = n;
	while (p >= n) p = Pollard_Rho(p, c--);
	get_small(p, c);
	get_small(n / p, c);
}
int main(int argc, char const *argv[])
{
	srand(time(NULL));
	scanf("%lld", &T);
	while (T--)
	{
		scanf("%lld", &n);
		if (Miller_Rabin(n, 10))
			printf("Prime\n");
		else
		{
			ans = n;
			get_small(n, 240);
			printf("%lld\n", ans);
		}
	}
	return 0;
}


随机算法Miller_Rabin测试素数,Pollard_Rho算法出最小因子。

你可能感兴趣的:(POJ 1811 Miller_Rabin算法Pollard_Rho算法)