A tree is a connected undirected graph consisting of n vertices and n - 1 edges. Vertices are numbered 1 through n.
Limak is a little polar bear and Radewoosh is his evil enemy. Limak once had a tree but Radewoosh stolen it. Bear is very sad now because he doesn't remember much about the tree — he can tell you only three values n, d and h:
The distance between two vertices of the tree is the number of edges on the simple path between them.
Help Limak to restore his tree. Check whether there exists a tree satisfying the given conditions. Find any such tree and print its edges in any order. It's also possible that Limak made a mistake and there is no suitable tree – in this case print "-1".
The first line contains three integers n, d and h (2 ≤ n ≤ 100 000, 1 ≤ h ≤ d ≤ n - 1) — the number of vertices, diameter, and height after rooting in vertex 1, respectively.
If there is no tree matching what Limak remembers, print the only line with "-1" (without the quotes).
Otherwise, describe any tree matching Limak's description. Print n - 1 lines, each with two space-separated integers – indices of vertices connected by an edge. If there are many valid trees, print any of them. You can print edges in any order.
5 3 2
1 2 1 3 3 4 3 5
8 5 2
-1
8 4 2
4 8 5 7 2 3 8 1 2 1 5 6 1 5
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); } #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; } const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f; int n, h, d; int a[N]; bool solve() { if (h < (d + 1) / 2)return 0; //必须有h>=(d+1)/2 if (h > d)return 0; //必须有h<=d if (n > 2 && d == 1)return 0; //当n>2时必有d>2 for (int i = 1; i <= d + 1; ++i)a[i] = i; swap(a[1], a[1 + h]); for (int i = 1; i <= d; ++i)printf("%d %d\n", a[i], a[i + 1]); int p = 1 + d / 2; for (int i = d + 2; i <= n; ++i)printf("%d %d\n", a[p], i); return 1; } int main() { while (~scanf("%d%d%d", &n, &d, &h)) { if (!solve())puts("-1"); } return 0; } /* 【题意】 让你构造一棵树,使其满足—— 1,有n(1e5)个节点 2,树的直径为d 3,距离节点1最远的点的距离为h 【类型】 贪心 构造 【分析】 我们直接从贪心的角度入手做构造就好啦。 只要d>=h>=(d+1)/2即可成功构造 唯一的反例是d==h==1且点数超过2的时候,这个特判一下即可。 构造方法: 首先,我们构造一条长度为d的链,作为这棵树的直径 然后,我们使得节点1这这条链上,距离一端的位置恰好为h 至于剩下的节点,全部连在直径中间的位置即可。 【时间复杂度&&优化】 O(n) */