Hadoop MapReduce示例程序WordCount.java手动编译运行解析

WordCount.java

vi WordCount.java

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

  public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{
    
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
      
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }
  
  public static class IntSumReducer 
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, 
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
    Job job = new Job(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}


编译


建立保存生成的编译后的class文件的文件夹wordcount_classes

mkdir ~/wordcount_classes

需要指定编译依赖的jar包,中间用冒号隔开

javac -classpath /usr/lib/hadoop-0.20/hadoop-core-0.20.2-cdh3u6.jar:/usr/lib/hadoop-0.20/lib/commons-cli-1.2.jar -d wordcount_classes WordCount.java 


打包


jar -cvf WordCount.jar -C wordcount_classes/ .


运行


hadoop jar ~/WordCount.jar WordCount input output

input对应hdfs://user/root/input文件夹,output是结果输出的文件夹,必须是原来不存在的,否则将运行不成功,output将生成在/user/root/ouput位置。


结果

root@bjidss46:~# hadoop jar WordCount.jar WordCount input output
13/11/20 16:10:07 INFO input.FileInputFormat: Total input paths to process : 1
13/11/20 16:10:07 WARN snappy.LoadSnappy: Snappy native library is available
13/11/20 16:10:07 INFO util.NativeCodeLoader: Loaded the native-hadoop library
13/11/20 16:10:07 INFO snappy.LoadSnappy: Snappy native library loaded
13/11/20 16:10:07 INFO mapred.JobClient: Running job: job_201311201528_0008
13/11/20 16:10:08 INFO mapred.JobClient:  map 0% reduce 0%
13/11/20 16:10:12 INFO mapred.JobClient:  map 100% reduce 0%
13/11/20 16:10:16 INFO mapred.JobClient:  map 100% reduce 100%
13/11/20 16:10:16 INFO mapred.JobClient: Job complete: job_201311201528_0008
13/11/20 16:10:16 INFO mapred.JobClient: Counters: 26
13/11/20 16:10:16 INFO mapred.JobClient:   Job Counters 
13/11/20 16:10:16 INFO mapred.JobClient:     Launched reduce tasks=1
13/11/20 16:10:16 INFO mapred.JobClient:     SLOTS_MILLIS_MAPS=4473
13/11/20 16:10:16 INFO mapred.JobClient:     Total time spent by all reduces waiting after reserving slots (ms)=0
13/11/20 16:10:16 INFO mapred.JobClient:     Total time spent by all maps waiting after reserving slots (ms)=0
13/11/20 16:10:16 INFO mapred.JobClient:     Launched map tasks=1
13/11/20 16:10:16 INFO mapred.JobClient:     Data-local map tasks=1
13/11/20 16:10:16 INFO mapred.JobClient:     SLOTS_MILLIS_REDUCES=3523
13/11/20 16:10:16 INFO mapred.JobClient:   FileSystemCounters
13/11/20 16:10:16 INFO mapred.JobClient:     FILE_BYTES_READ=57
13/11/20 16:10:16 INFO mapred.JobClient:     HDFS_BYTES_READ=138
13/11/20 16:10:16 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=105460
13/11/20 16:10:16 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=35
13/11/20 16:10:16 INFO mapred.JobClient:   Map-Reduce Framework
13/11/20 16:10:16 INFO mapred.JobClient:     Map input records=1
13/11/20 16:10:16 INFO mapred.JobClient:     Reduce shuffle bytes=57
13/11/20 16:10:16 INFO mapred.JobClient:     Spilled Records=8
13/11/20 16:10:16 INFO mapred.JobClient:     Map output bytes=43
13/11/20 16:10:16 INFO mapred.JobClient:     CPU time spent (ms)=1530
13/11/20 16:10:16 INFO mapred.JobClient:     Total committed heap usage (bytes)=504758272
13/11/20 16:10:16 INFO mapred.JobClient:     Combine input records=4
13/11/20 16:10:16 INFO mapred.JobClient:     SPLIT_RAW_BYTES=111
13/11/20 16:10:16 INFO mapred.JobClient:     Reduce input records=4
13/11/20 16:10:16 INFO mapred.JobClient:     Reduce input groups=4
13/11/20 16:10:16 INFO mapred.JobClient:     Combine output records=4
13/11/20 16:10:16 INFO mapred.JobClient:     Physical memory (bytes) snapshot=334163968
13/11/20 16:10:16 INFO mapred.JobClient:     Reduce output records=4
13/11/20 16:10:16 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=2914021376
13/11/20 16:10:16 INFO mapred.JobClient:     Map output records=4


总结


之所以使用原始的javac方式编译执行是为了更了解mapreduce的流程,使用eclipse的时候导出jar请不要将依赖的诸多jar包一起打包,只需要hadoop-core-0.20.2-cdh3u6.jar和/usr/lib/hadoop-0.20/lib/commons-cli-1.2.jar即可。


参考


Hadoop MapReduce教程(Apache官网)

第一个mapreduce程序

WordCount运行详解

你可能感兴趣的:(Hadoop MapReduce示例程序WordCount.java手动编译运行解析)