WordCount.java
vi WordCount.java
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
建立保存生成的编译后的class文件的文件夹wordcount_classes
mkdir ~/wordcount_classes
需要指定编译依赖的jar包,中间用冒号隔开
javac -classpath /usr/lib/hadoop-0.20/hadoop-core-0.20.2-cdh3u6.jar:/usr/lib/hadoop-0.20/lib/commons-cli-1.2.jar -d wordcount_classes WordCount.java
打包
jar -cvf WordCount.jar -C wordcount_classes/ .
运行
hadoop jar ~/WordCount.jar WordCount input output
input对应hdfs://user/root/input文件夹,output是结果输出的文件夹,必须是原来不存在的,否则将运行不成功,output将生成在/user/root/ouput位置。
结果
root@bjidss46:~# hadoop jar WordCount.jar WordCount input output 13/11/20 16:10:07 INFO input.FileInputFormat: Total input paths to process : 1 13/11/20 16:10:07 WARN snappy.LoadSnappy: Snappy native library is available 13/11/20 16:10:07 INFO util.NativeCodeLoader: Loaded the native-hadoop library 13/11/20 16:10:07 INFO snappy.LoadSnappy: Snappy native library loaded 13/11/20 16:10:07 INFO mapred.JobClient: Running job: job_201311201528_0008 13/11/20 16:10:08 INFO mapred.JobClient: map 0% reduce 0% 13/11/20 16:10:12 INFO mapred.JobClient: map 100% reduce 0% 13/11/20 16:10:16 INFO mapred.JobClient: map 100% reduce 100% 13/11/20 16:10:16 INFO mapred.JobClient: Job complete: job_201311201528_0008 13/11/20 16:10:16 INFO mapred.JobClient: Counters: 26 13/11/20 16:10:16 INFO mapred.JobClient: Job Counters 13/11/20 16:10:16 INFO mapred.JobClient: Launched reduce tasks=1 13/11/20 16:10:16 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=4473 13/11/20 16:10:16 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 13/11/20 16:10:16 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 13/11/20 16:10:16 INFO mapred.JobClient: Launched map tasks=1 13/11/20 16:10:16 INFO mapred.JobClient: Data-local map tasks=1 13/11/20 16:10:16 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=3523 13/11/20 16:10:16 INFO mapred.JobClient: FileSystemCounters 13/11/20 16:10:16 INFO mapred.JobClient: FILE_BYTES_READ=57 13/11/20 16:10:16 INFO mapred.JobClient: HDFS_BYTES_READ=138 13/11/20 16:10:16 INFO mapred.JobClient: FILE_BYTES_WRITTEN=105460 13/11/20 16:10:16 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=35 13/11/20 16:10:16 INFO mapred.JobClient: Map-Reduce Framework 13/11/20 16:10:16 INFO mapred.JobClient: Map input records=1 13/11/20 16:10:16 INFO mapred.JobClient: Reduce shuffle bytes=57 13/11/20 16:10:16 INFO mapred.JobClient: Spilled Records=8 13/11/20 16:10:16 INFO mapred.JobClient: Map output bytes=43 13/11/20 16:10:16 INFO mapred.JobClient: CPU time spent (ms)=1530 13/11/20 16:10:16 INFO mapred.JobClient: Total committed heap usage (bytes)=504758272 13/11/20 16:10:16 INFO mapred.JobClient: Combine input records=4 13/11/20 16:10:16 INFO mapred.JobClient: SPLIT_RAW_BYTES=111 13/11/20 16:10:16 INFO mapred.JobClient: Reduce input records=4 13/11/20 16:10:16 INFO mapred.JobClient: Reduce input groups=4 13/11/20 16:10:16 INFO mapred.JobClient: Combine output records=4 13/11/20 16:10:16 INFO mapred.JobClient: Physical memory (bytes) snapshot=334163968 13/11/20 16:10:16 INFO mapred.JobClient: Reduce output records=4 13/11/20 16:10:16 INFO mapred.JobClient: Virtual memory (bytes) snapshot=2914021376 13/11/20 16:10:16 INFO mapred.JobClient: Map output records=4
总结
之所以使用原始的javac方式编译执行是为了更了解mapreduce的流程,使用eclipse的时候导出jar请不要将依赖的诸多jar包一起打包,只需要hadoop-core-0.20.2-cdh3u6.jar和/usr/lib/hadoop-0.20/lib/commons-cli-1.2.jar即可。
参考
Hadoop MapReduce教程(Apache官网)
第一个mapreduce程序
WordCount运行详解