UVA - 11795 Mega Man's Mission

题意: 洛克人要打败n个robots, 并且每个robot都需要一些特定的武器才可以消灭, 现在给出洛克人的初始化武器和每个机器可以被消灭的特定武器. 问你有多少中消灭全部robots的顺序方式.

解题思路:
1. 看了题目的数据量, n不大, 可以确定用二进制的状态表示. 算法的复杂度O(n*2^n);
2. 设dp[S]为已经消灭了S集合里面的robots的总方式.
状态方程: dp[S] += dp[ S^{j} ], 其中{j} 属于S 并且 当前的武器集合里面包含消灭j的武器.

#include <cstring>
#include <cstdio>

long long DP[1<<17];
int n, Weapon[1<<17];

long long DPS(int sum) {
    if (DP[sum] != -1)
        return DP[sum];

    long long ans = 0;
    for (int i = 0; i < n; i++)
        if (sum & (1<<i)) {
            int tmp = sum - (1<<i);
            if(Weapon[tmp] & (1<<i))
                ans += DPS(tmp);
        }
    return DP[sum] = ans;
}

int main() {
    int T, cnt = 0;
    scanf("%d", &T);
    while (T--) {
        scanf("%d",&n);
        memset(DP, -1, sizeof(DP));
        memset(Weapon, 0, sizeof(Weapon));
        DP[0] = 1;
        char s[20];
        int A[20] = {0};

        for (int i = 0; i <= n; i++){
            scanf("%s", s);
            for (int j = 0; j <= n; j++)
                if (s[j] == '1')
                    A[i] |= (1<<j);
        }

        int UP = 1 << n;
        for (int i = 0; i < UP; i++){
            Weapon[i] = A[0];
            for (int j = 0; j < n; j++)
                if (i & (1<<j))
                    Weapon[i] |= A[j+1];
        }
        printf("Case %d: %lld\n", ++cnt, DPS(UP - 1));
    }
    return 0;
}

你可能感兴趣的:(UVA - 11795 Mega Man's Mission)