解析ThreadPoolExecutor

ThreadPoolExecutor能够用于创建一个线程池,它提供了一些有用的方法:

解析ThreadPoolExecutor_第1张图片

     实例化一个线程池,实践中用的比较多是以下构造方法:

[java]  view plain copy print ?
  1. public ThreadPoolExecutor(int corePoolSize,  
  2.                           int maximumPoolSize,  
  3.                           long keepAliveTime,  
  4.                           TimeUnit unit,  
  5.                           BlockingQueue<Runnable> workQueue,  
  6.                           ThreadFactory threadFactory) {  
  7.     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,  
  8.          threadFactory, defaultHandler);  
  9. }  

   JDK API  线程池构造方法参数介绍:

解析ThreadPoolExecutor_第2张图片

  • corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务     也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads()方法,线程池会提前创       建并启动所有基本线程。
  • maximumPoolSize(线程池最大大小):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建     新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。
  • runnableTaskQueue(任务队列):指定等待执行的任务的阻塞队列类型, 可以选择以下几个阻塞队列:
    • ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。注意,对于任务量多线程池,数组队列性能佳。
    • LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列比较好。
    • SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue。静态工厂方法Executors.newCachedThreadPool使用了这个队列。
    • PriorityBlockingQueue:一个具有优先级的无限阻塞队列。这个队列常应用于设置了线程优先级的线程池
  • ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字,常用作标识跟踪的作用。
  • RejectedExecutionHandler(handler饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。以下是JDK1.5提供的四种策略。
    • AbortPolicy:直接抛出异常。
    • CallerRunsPolicy:只用调用者所在线程来运行任务。
    • DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。在JavaEE的Servlet中这个比较常用。
    • DiscardPolicy:不处理,丢弃掉。当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。
  • keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率,但是会始终耗费OS的资源。建议根据具体的应用场景来设置这个参数值。
  • TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。  
    1.  调用方法在上一个博客(熟悉Thread Pool, Executor, Callable/Future)中已经介绍了,这里不详细说明了。
  • [java]  view plain copy print ?
    1. threadsPool.execute(new Runnable() {  
    2.             @Override  
    3.             public void run() {  
    4.                 // TODO Auto-generated method stub  
    5.             }  
    6.         });  

         使用Future<Object>获取返回结果:

    [java]  view plain copy print ?
    1. Future<Object> future = executor.submit(harReturnValuetask);  
    2. try {  
    3.      Object s = future.get();  
    4. catch (InterruptedException e) {  
    5.     // 处理中断异常  
    6. catch (ExecutionException e) {  
    7.     // 处理无法执行任务异常  
    8. finally {  
    9.     // 关闭线程池  
    10.     executor.shutdown();  
    11. }  
  •  合理的配置线程池

        要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:

    1. 任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
    2. 任务的优先级:高,中和低。
    3. 任务的执行时间:长,中和短。
    4. 任务的依赖性:是否依赖其他系统资源,如数据库连接。

          任务性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务配置尽可能小的线程,如配置Ncpu+1个线程的线程池。IO密集型任务则由于线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

          优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。

         建议使用有界队列,有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点,比如几千。有一次我们组使用的后台任务线程池的队列和线程池全满了,不断的抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞住,任务积压在线程池里。如果当时我们设置成无界队列,线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然我们的系统所有的任务是用的单独的服务器部署的,而我们使用不同规模的线程池跑不同类型的任务,但是出现这样问题时也会影响到其他任务。

     线程池的监控

    通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用

    • taskCount:线程池需要执行的任务数量。
    • completedTaskCount:线程池在运行过程中已完成的任务数量。小于或等于taskCount。
    • largestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过。如等于线程池的最大大小,则表示线程池曾经满了。
    • getPoolSize:线程池的线程数量。如果线程池不销毁的话,池里的线程不会自动销毁,所以这个大小只增不减(getActiveCount:获取活动的线程数)。

          通过扩展线程池进行监控。通过继承线程池并重写线程池的beforeExecute,afterExecute和terminated方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。如监控任务的平均执行时间,最大执行时间和最小执行时间等。

  • 你可能感兴趣的:(java,多线程,线程池)