Part Acquisition
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 2842 Accepted: 1231 Special Judge
Description
The cows have been sent on a mission through space to acquire a new milking machine for their barn. They are flying through a cluster of stars containing N (1 <= N <= 50,000) planets, each with a trading post.
The cows have determined which of K (1 <= K <= 1,000) types of objects (numbered 1..K) each planet in the cluster desires, and which products they have to trade. No planet has developed currency, so they work under the barter system: all trades consist of each party trading exactly one object (presumably of different types).
The cows start from Earth with a canister of high quality hay (item 1), and they desire a new milking machine (item K). Help them find the best way to make a series of trades at the planets in the cluster to get item K. If this task is impossible, output -1.
Input
* Line 1: Two space-separated integers, N and K.
* Lines 2..N+1: Line i+1 contains two space-separated integers, a_i and b_i respectively, that are planet i's trading trading products. The planet will give item b_i in order to receive item a_i.
Output
* Line 1: One more than the minimum number of trades to get the milking machine which is item K (or -1 if the cows cannot obtain item K).
* Lines 2..T+1: The ordered list of the objects that the cows possess in the sequence of trades.
Sample Input
6 5
1 3
3 2
2 3
3 1
2 5
5 4
Sample Output
4
1
3
2
5
Hint
OUTPUT DETAILS:
The cows possess 4 objects in total: first they trade object 1 for object 3, then object 3 for object 2, then object 2 for object 5
交换商品。求交换次数最多的。并输出结点
代码:
#include<cstdio> #include<cmath> #include<string> #include<cstring> #include<queue> #include<algorithm> #include<iostream> #include<cstring> using namespace std; #define INF 1000000001 int n,m; int a,b; bool vis[1001]; int pre[1001]; int dis[1001]; int ans[1001]; int map[1001][1001]; void dijkstra(){ memset(vis,false,sizeof(vis)); for(int i=1;i<=n;i++){ dis[i]=INF; } dis[1]=0; int k; for(int i=1;i<=n;i++){ int min=INF; for(int j=1;j<=n;j++){ if(!vis[j]&&dis[j]<min){ k=j; min=dis[j]; } } if(min==INF) break; vis[k]=true; for(int j=1;j<=n;j++){ if(!vis[j]&&dis[j]>dis[k]+map[k][j]){ dis[j]=map[k][j]+dis[k]; pre[j]=k; } } } } void init(){ for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) map[i][j]=INF; for(int i=1;i<=m;i++){ scanf("%d%d",&a,&b); map[a][b]=1; } } int main(){ while(scanf("%d%d",&m,&n)!=EOF){ memset(pre,0,sizeof(pre)); int sum=0; init(); dijkstra(); if(dis[n]==INF) printf("-1\n"); else{ ans[sum++]=n; int temp=pre[n];//记录前驱结点的个数 while(temp!=1){ ans[sum++]=temp; temp=pre[temp]; } ans[sum++]=1; printf("%d\n",sum); for(int i=sum-1;i>=0;i--) printf("%d\n",ans[i]); } } return 0; }