数据挖掘笔记-聚类-DBSCAN-网页正文提取

  进行网页正文提取之前必须先对网页源文件代码进行预处理,过滤掉一些诸如脚本、样式、注释等元素。过滤后的网页信息不包含任何HTML标签元素,将每行的文本视为一个二维空间中的点Point(x,y),x表示当前行号,y表示当前行文本的字符长度。基于这些点作为基础,进行DBSCAN聚类算法。通过聚类的结果可以发现:具有相似密度如导航栏、广告栏等区域的点会成为一类,而正文文本区域的点由于文本密度高的特点,会使得这些点不会聚到任意一类中,这些点与其他区域的点之间的距离会大于定义的半径值而成为孤立点或噪声点,这些孤立点就是所需的正文内容。

Java简单实现代码如下:
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.project.modules.clustering.dbscan.data.Point;
import org.project.utils.http.HttpClientUtils;
import org.project.utils.http.HttpUtils;

public class HtmlDBScanBuilder {
	
	//半径
	public static double Epislon = 15;
	//密度、最小点个数
	public static int MinPoints = 5;
	
	private Map<String, String> map = new HashMap<String, String>();
	
	public List<Point<Integer>> extractPointsFromHtml() {
		String url = "http://ent.163.com/14/1123/11/ABNVIR5U000300B1.html";
		String content = HttpClientUtils.get(url, HttpUtils.ENCODE_GB2312);
		String regEx_script = "<[\\s]*?script[^>]*?>[\\s\\S]*?<[\\s]*?\\/[\\s]*?script[\\s]*?>";
		String regEx_noscript = "<[\\s]*?noscript[^>]*?>[\\s\\S]*?<[\\s]*?\\/[\\s]*?noscript[\\s]*?>";
        String regEx_style = "<[\\s]*?style[^>]*?>[\\s\\S]*?<[\\s]*?\\/[\\s]*?style[\\s]*?>"; 
        String regEx_iframe = "<[\\s]*?iframe[^>]*?>[\\s\\S]*?<[\\s]*?\\/[\\s]*?iframe[\\s]*?>";
        String regEx_comment = "<!--[\\s\\S]*?-->";
        String regEx_doctype = "<!DOCTYPE[\\s\\S]*?>";
        String regEx_tag1 = "<([^>]*)>";
        String regEx_tag2 = "[<>"&]";
        String regEx_tag3 = "[\\.\\-\\:\\{\\}\\#\\%\\>a-zA-Z]*";
        Set<String> regExs = new HashSet<String>();
        regExs.add(regEx_script);
        regExs.add(regEx_noscript);
        regExs.add(regEx_style);
        regExs.add(regEx_iframe);
        regExs.add(regEx_comment);
        regExs.add(regEx_doctype);
        regExs.add(regEx_tag1);
        regExs.add(regEx_tag2);
        regExs.add(regEx_tag3);
        for (String regEx : regExs) {
        	 Pattern pattern = Pattern.compile(regEx, Pattern.CASE_INSENSITIVE);
             Matcher matcher = pattern.matcher(content);
             content = matcher.replaceAll("");
        }
        List<Point<Integer>> points = new ArrayList<Point<Integer>>();
        int index = 0;
        String[] lines = content.split("\n");
        for (int i = 0, len = lines.length; i < len; i++) {
        	String line = lines[i].trim();
        	if (null == line || "".equals(line)) continue;
        	map.put(String.valueOf(index), line);
        	points.add(new Point<Integer>(index++, line.length()));
        }
        return points;
	}
	
	//计算两点之间的欧氏距离
	public double euclideanDistance(Point<Integer> a, Point<Integer> b) {
		double sum =  Math.pow(a.getX() - b.getX(), 2) + Math.pow(a.getY() - b.getY(), 2);
		return Math.sqrt(sum);
	}
	
	//获取当前点的邻居
	public List<Point<Integer>> obtainNeighbors(Point<Integer> current, List<Point<Integer>> points) {
		List<Point<Integer>> neighbors = new ArrayList<Point<Integer>>();
		for (Point<Integer> point : points) {
			double distance = euclideanDistance(current, point);
			if (distance < Epislon) {
				neighbors.add(point);
			}
		}
		return neighbors;
	}
	
	public void mergeCluster(Point<Integer> point, List<Point<Integer>> neighbors,
			int clusterId, List<Point<Integer>> points) {
		point.setClusterId(clusterId);
		for (Point<Integer> neighbor : neighbors) {
			//邻域点中未被访问的点先观察是否是核心对象
			//如果是核心对象,则其邻域范围内未被聚类的点归入当前聚类中
			if (!neighbor.isAccessed()) {
				neighbor.setAccessed(true);
				List<Point<Integer>> nneighbors = obtainNeighbors(neighbor, points);
				if (nneighbors.size() > MinPoints) {
					for (Point<Integer> nneighbor : nneighbors) {
						if (nneighbor.getClusterId() <= 0) {
							nneighbor.setClusterId(clusterId);
						}
					}
				}
			}
			//未被聚类的点归入当前聚类中
			if (neighbor.getClusterId() <= 0) {
				neighbor.setClusterId(clusterId);
			}
		}
	}
	
	public void cluster(List<Point<Integer>> points) {
		//clusterId初始为0表示未分类,分类后设置为一个正数,如果设置为-1表示噪声 
		int clusterId = 0;
		boolean flag = true;
		//所有点都被访问完成即停止遍历
		while (flag) {
			for (Point<Integer> point : points) {
				if (point.isAccessed()) {
					continue;
				}
				point.setAccessed(true);
				flag = true;
				List<Point<Integer>> neighbors = obtainNeighbors(point, points);
				System.out.println("neighbors: " + neighbors.size());
				if (neighbors.size() >= MinPoints) {
					//满足核心对象条件的点创建一个新簇
					clusterId = point.getClusterId() <= 0 ? (++clusterId) : point.getClusterId();
					System.out.println("--clusterId: " + clusterId);
					mergeCluster(point, neighbors, clusterId, points);
				} else {
					//未满足核心对象条件的点暂时当作噪声处理
					if(point.getClusterId() <= 0) {
						 point.setClusterId(-1);
					}
				}
				flag = false;
			}
		}
	}
	
	//打印结果
	public void print(List<Point<Integer>> points) {
		Collections.sort(points, new Comparator<Point<Integer>>() {
			@Override
			public int compare(Point<Integer> o1, Point<Integer> o2) {
				return Integer.valueOf(o1.getClusterId()).compareTo(o2.getClusterId());
			}
		});
		for (Point<Integer> point : points) {
			System.out.println(point.getClusterId() + " - " + point + " - "
					+ map.get(String.valueOf(point.getX())));
		}
	}
	
	public void run() {
		List<Point<Integer>> points = extractPointsFromHtml();
		cluster(points);
		print(points);
	}
	
	public static void main(String[] args) {
		new HtmlDBScanBuilder().run();
	}
	
}

代码托管:https://github.com/fighting-one-piece/repository-datamining.git



你可能感兴趣的:(数据挖掘,聚类,DBSCAN,正文提取)