===============================
本文系本站原创,欢迎转载!
转载请注明出处:http://www.cnblogs.com/gdt-a20
===============================
I2c子系统将i2c控制器(i2c寄存器所在的那块电路)抽象出来,用adapter(适配器)这个结构来描述,可以说一个适配器就代表一条i2c总线,而挂接在i2c总线上的设备是用client这个结构体来表述,另外i2c_bus上的设备链表挂接的不单单是连接的这条i2c上的client,同样adapter也作为一个设备挂在其所在的i2c_bus,也就是说控制器和设备都作为i2c_bus上的设备连接在设备链表,他们用内嵌的device的type这个成员来区分,适配器的类型为i2c_adapter_type,client的类型为i2c_client_type。
一、i2c相关的描述结构
首先看一下i2c子系统给adapter定义的描述结构:
1 struct i2c_adapter { 2 struct module *owner; 3 unsigned int id; 4 unsigned int class; // 适配器支持的类型,如传感器,eeprom等 5 const struct i2c_algorithm *algo; //该适配器的通信函数 6 void *algo_data; 7 /* data fields that are valid for all devices */ 8 struct rt_mutex bus_lock; 9 int timeout; //超时时间限定 10 int retries; //通信重复次数限定 11 /* 12 * 内嵌的标准device,其中dev->type标识该设备 13 * 是个adapter,其值为i2c_adapter_type 14 */ 15 struct device dev; 16 17 int nr; //适配器编号也是bus编号,第几条i2c总线 18 char name[48]; //名字 19 struct completion dev_released; 20 struct mutex userspace_clients_lock; 21 struct list_head userspace_clients; 22 };
再来看一下client的描述结构:
1 struct i2c_client { 2 unsigned short flags; //设备的标志,如唤醒标志等等 3 4 /* chip address - NOTE: 7bit */ 5 /* addresses are stored in the */ 6 /* _LOWER_ 7 bits */ 7 unsigned short addr; //设备的地址 8 char name[I2C_NAME_SIZE]; //设备的名字 9 struct i2c_adapter *adapter; //设备所属的适配器 10 struct i2c_driver *driver; //设备的driver 11 12 /* 13 * 内嵌的标准device模型,其中dev->type标识该设备 14 * 是个client,其值为i2c_client_type 15 */ 16 struct device dev; /* the device structure */ 17 int irq; //中断号 18 struct list_head detected; //挂接点,挂接在adapter 19 };
下面是driver的表述结构i2c_driver:
1 struct i2c_driver { 2 unsigned int class; //支持的类型,与adapter的class相对 3 /* Notifies the driver that a new bus has appeared or is about to be 4 * removed. You should avoid using this if you can, it will probably 5 * be removed in a near future. 6 */ 7 8 int (*attach_adapter)(struct i2c_adapter *); //旧式探测函数 9 int (*detach_adapter)(struct i2c_adapter *); 10 /* Standard driver model interfaces */ 11 int (*probe)(struct i2c_client *, const struct i2c_device_id *); 12 int (*remove)(struct i2c_client *); 13 /* driver model interfaces that don't relate to enumeration */ 14 void (*shutdown)(struct i2c_client *); 15 int (*suspend)(struct i2c_client *, pm_message_t mesg); 16 int (*resume)(struct i2c_client *); 17 /* Alert callback, for example for the SMBus alert protocol. 18 * The format and meaning of the data value depends on the protocol. 19 * For the SMBus alert protocol, there is a single bit of data passed 20 * as the alert response's low bit ("event flag"). 21 */ 22 void (*alert)(struct i2c_client *, unsigned int data); 23 /* a ioctl like command that can be used to perform specific functions 24 * with the device. 25 */ 26 int (*command)(struct i2c_client *client, unsigned int cmd, void *arg); 27 /* 28 * 内嵌的标准driver,driver的of_match_table成员也用于标识其支持 29 * 的设备,并且优先级高于id_table 30 */ 31 struct device_driver driver; 32 33 const struct i2c_device_id *id_table; //支持的client信息表 34 /* Device detection callback for automatic device creation */ 35 36 int (*detect)(struct i2c_client *, struct i2c_board_info *); //探测函数 37 const unsigned short *address_list; //driver支持的client地址 38 struct list_head clients; //挂接其探测到的支持的设备 39 };
另外client端有一条全局链表,用于串联所有i2c的client设备,为__i2c_board_list,也就是说client可以静态注册亦可动态
被探测,静态注册挂接在该链表上的结构为:
1 struct i2c_devinfo { 2 struct list_head list; //连接指针指向前后设备 3 int busnum; //所在bus的编号 4 struct i2c_board_info board_info; //板级平台信息相关的结构体 5 }; 6 //其中 i2c_board_info结构的源码为: 7 struct i2c_board_info { 8 char type[I2C_NAME_SIZE]; //名字 9 unsigned short flags; //标志 10 unsigned short addr; //地址 11 void *platform_data; //私有特殊数据 12 struct dev_archdata *archdata; 13 #ifdef CONFIG_OF 14 struct device_node *of_node; //节点 15 #endi 16 int irq; //中断号 17 };
i2c_devinfo结构静态注册的信息最后都会被整合集成到client中,形成一个标准的i2c_client设备并注册。
二、i2c核心初始化代码分析
首先看一下i2c平台无关的核心初始化,代码位于drivers/i2c/i2c-core.c下:
1 static int __init i2c_init(void) 2 { 3 int retval; 4 /* 5 * 注册i2c_bus 6 */ 7 retval = bus_register(&i2c_bus_type); 8 if (retval) 9 return retval; 10 #ifdef CONFIG_I2C_COMPAT 11 /* 12 * 在sys/class下创建适配器目录 13 */ 14 i2c_adapter_compat_class = class_compat_register("i2c-adapter"); 15 if (!i2c_adapter_compat_class) { 16 retval = -ENOMEM; 17 goto bus_err; 18 } 19 20 #endif 21 /* 22 * 增加一个虚拟的driver 23 */ 24 retval = i2c_add_driver(&dummy_driver); 25 if (retval) 26 goto class_err; 27 return 0; 28 class_err: 29 #ifdef CONFIG_I2C_COMPAT 30 class_compat_unregister(i2c_adapter_compat_class); 31 bus_err: 32 #endif 33 bus_unregister(&i2c_bus_type); 34 return retval; 35 } 36 //其中的i2c_bus_type原型为: 37 struct bus_type i2c_bus_type = { 38 .name = "i2c", 39 .match = i2c_device_match, 40 .probe = i2c_device_probe, 41 .remove = i2c_device_remove, 42 .shutdown = i2c_device_shutdown, 43 .pm = &i2c_device_pm_ops, 44 };
三、i2c_add_driver分析
驱动端的统一接口为i2c_add_driver:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
|
static inline int i2c_add_driver( struct i2c_driver *driver)
{
/*
*注册i2c driver,可能是adapter的,也可能是client的
*/
return i2c_register_driver(THIS_MODULE, driver);
}
int i2c_register_driver( struct module *owner, struct i2c_driver *driver)
{
int res;
/* Can't register until after driver model init*/
if (unlikely(WARN_ON(!i2c_bus_type.p)))
return -EAGAIN;
/* add the driver to the list of i2c drivers in the driver core */
/*
* i2c_driver内嵌的标准driver赋值,其bus指定为i2c_bus_type
*/
driver->driver.owner = owner;
driver->driver.bus = &i2c_bus_type;
/* When registration returns, the driver core
* will have called probe() for all matching-but-unbound devices.
*/
/*注册标准的driver,driver注册后会去i2c_bus_type的设备链表上匹配
*设备,匹配函数用的是bus端的,也就是i2c_device_match,如果匹配成功
*将建立标准关联,并且将调用bus端的probe函数初始化这个设备,即
*函数i2c_device_probe,下面会逐个分析
*/
res = driver_register(&driver->driver);
if (res)
return res;
pr_debug( "i2c-core: driver [%s] registered/n" , driver->driver.name);
/*
* 把该driver的clients初始化,该成员连接着这个driver可以操作的具
* 体设备
*/
INIT_LIST_HEAD(&driver->clients);
/* Walk the adapters that are already present */
mutex_lock(&core_lock);
/*
* 遍历挂接在该i2c设备链表上的设备,并对其都调用__process_new_driver
* 函数
*/
bus_for_each_dev(&i2c_bus_type, NULL, driver, __process_new_driver);
mutex_unlock(&core_lock);
return 0;
}
/****************************
* 匹配函数i2c_device_match *
****************************/
static int i2c_device_match( struct device *dev, struct device_driver *drv)
{
/*
* i2c_verify_client检查匹配的这个设备是否为i2c_client_type
* 类型,如果不是则返回NULL,此处的匹配只是针对i2c设备的
* 不是适配器
*/
struct i2c_client *client = i2c_verify_client(dev);
struct i2c_driver *driver;
/*
* 如果不是i2c设备类型就返回
*/
if (!client)
return 0;
/* Attempt an OF style match */
/*
* 如果定义了CONFIG_OF_DEVICE,那么就利用
* drv.of_match_table成员表进行匹配
*/
if (of_driver_match_device(dev, drv))
return 1;
/*
* 由内嵌的driver得到外面封装的i2c_driver
*/
driver = to_i2c_driver(drv);
/* match on an id table if there is one */
/*
* 如果i2c_driver->id_table存在,也就是支持的设备信息表
* 存在,那么利用这个表进行匹配
*/
if (driver->id_table)
return i2c_match_id(driver->id_table, client) != NULL;
return 0;
}
/**********************************
* 初始化设备函数i2c_device_probe *
**********************************/
static int i2c_device_probe( struct device *dev)
{
/*
* 检查如果设备类型不是client则返回
*/
struct i2c_client *client = i2c_verify_client(dev);
struct i2c_driver *driver;
int status;
if (!client)
return 0;
/*
* dev->driver指向匹配完成的driver,根据该标准
* driver得到其外围封装的i2c_driver
*/
driver = to_i2c_driver(dev->driver);
/*
* 如果该i2c_driver的probe成员或者id_table成员为
* NULL则退出
*/
if (!driver->probe || !driver->id_table)
return -ENODEV;
/*
* client的driver成员赋值为该i2c_driver
*/
client->driver = driver;
/*
* 唤醒该设备
*/
if (!device_can_wakeup(&client->dev))
device_init_wakeup(&client->dev,
client->flags & I2C_CLIENT_WAKE);
dev_dbg(dev, "probe/n" );
/*
* 利用i2c_driver的probe成员初始化该设备,此部分为实际平台相关
*/
status = driver->probe(client, i2c_match_id(driver->id_table, client));
/*
* 失败则清除client指定的driver
*/
if (status) {
client->driver = NULL;
i2c_set_clientdata(client, NULL);
}
return status;
}
/*************************************************************
* 下面看一下当找到一个dev后调用的__process_new_driver函数
*************************************************************/
static int __process_new_driver( struct device *dev, void *data)
{
/*
* 设备的类型如果不是i2c_adapter类型就推出
* 下面的代码是针对i2c适配器的代码
*/
if (dev->type != &i2c_adapter_type)
return 0;
/*
* 如果这个设备代表i2c适配器,则调用i2c_do_add_adapter
* 此时的data类型为i2c_driver
*/
return i2c_do_add_adapter(data, to_i2c_adapter(dev)); //根据设备得到他的适配器
//i2c_driver。第一个是i2c_driver
}
/*************************
* i2c_do_add_adapter函数 *
*************************/
static int i2c_do_add_adapter( struct i2c_driver *driver,
struct i2c_adapter *adap)
{
/* Detect supported devices on that bus, and instantiate them */
/*
* 利用该适配器和该i2c_driver探测该适配器所在的这条i2c总线
* 找到该driver支持的设备并实例化它
*/
i2c_detect(adap, driver);
/* Let legacy drivers scan this bus for matching devices */
/*
* 老版本的探测利用i2c_driver的attach_adapter函数
*/
if (driver->attach_adapter) {
/* We ignore the return code; if it fails, too bad */
driver->attach_adapter(adap);
}
return 0;
}
/****************************
* 重点看一下i2c_detect函数 *
****************************/
static int i2c_detect( struct i2c_adapter *adapter, struct i2c_driver *driver)
{
const unsigned short *address_list;
struct i2c_client *temp_client;
int i, err = 0;
int adap_id = i2c_adapter_id(adapter);
/*
* 得到该i2c_driver指定的client地址范围
*/
address_list = driver->address_list;
/*
* driver平台相关的detect函数和client地址范围不能为NULL
*/
if (!driver->detect || !address_list)
return 0;
/* Set up a temporary client to help detect callback */
/*
* 申请一块client内存
*/
temp_client = kzalloc( sizeof ( struct i2c_client), GFP_KERNEL);
if (!temp_client)
return -ENOMEM;
/*
* 申请的client结构的adapter成员设置为当前的adapter
*/
temp_client->adapter = adapter;
/* Stop here if the classes do not match */
/*
* 当前adapter的类型如果和driver的类型不一样,则退出
* 例如:适配器的类型可以为传感器,eeprom,driver类型必须
* 与其匹配
*/
if (!(adapter-> class & driver-> class ))
goto exit_free;
/*
* 根据指定的支持的地址范围开始逐一探测
*/
for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
"addr 0x%02x/n" , adap_id, address_list[i]);
/*
* 临时申请的client的地址设置为这次要探测的地址
*/
temp_client->addr = address_list[i];
err = i2c_detect_address(temp_client, driver);
if (err)
goto exit_free;
}
exit_free:
kfree(temp_client);
return err;
}
/**********************************
* 继续跟进i2c_detect_address函数 *
**********************************/
static int i2c_detect_address( struct i2c_client *temp_client,
struct i2c_driver *driver)
{
struct i2c_board_info info;
struct i2c_adapter *adapter = temp_client->adapter;
int addr = temp_client->addr;
int err;
/* Make sure the address is valid */
/*
* 检查该地址是否有效,小于0x08或者大于0x77都是无效
* 地址,该函数在后面介绍
*/
err = i2c_check_addr_validity(addr);
if (err) {
dev_warn(&adapter->dev, "Invalid probe address 0x%02x/n" ,
addr);
return err;
}
/* Skip if already in use */
/*
* 如果地址在使用中则跳过
*/
if (i2c_check_addr_busy(adapter, addr))
return 0;
/* Make sure there is something at this address */
/*
* 默认初始化探测,确定该地址上有设备存在。jk: 其实很奇怪,对adapter的处理怎么转为探测设备了??
*/
if (!i2c_default_probe(adapter, addr))
return 0;
/* Finally call the custom detection function */
/*
* 走到这里将调用平台相关的自定义探测函数去探测该地址
* 上是否设备,并填充i2c_board_info结构体
*/
memset (&info, 0, sizeof ( struct i2c_board_info));
info.addr = addr;
err =driver->detect(temp_client, &info);
if (err) {
/* -ENODEV is returned if the detection fails. We catch it
here as this isn't an error. */
return err == -ENODEV ? 0 : err;
}
/* Consistency check */
/*
* 填充的info名字为空,则结束否则实例化这个设备
*/
if (info.type[0] == '/0' ) {
dev_err(&adapter->dev, "%s detection function provided "
"no name for 0x%x/n" , driver->driver.name,
addr);
} else {
struct i2c_client *client;
/* Detection succeeded, instantiate the device */
dev_dbg(&adapter->dev, "Creating %s at 0x%02x/n" ,
info.type, info.addr);
/*
* 根据当前适配器和填充的info实例化该地址上探测到的设备
*/
client = i2c_new_device(adapter, &info);
/*
* 实例化成功将该client挂到该driver的clients链表上
*/
if (client)
list_add_tail(&client->detected, &driver->clients); //驱动挂到driver下
else
dev_err(&adapter->dev, "Failed creating %s at 0x%02x/n" ,
info.type, info.addr);
}
return 0;
}
/******************************
* i2c_check_addr_validity函数 *
******************************/
static int i2c_check_addr_validity(unsigned short addr)
{
/*
* Reserved addresses per I2C specification:
* 0x00 General call address / START byte
* 0x01 CBUS address
* 0x02 Reserved for different bus format
* 0x03 Reserved for future purposes
* 0x04-0x07 Hs-mode master code
* 0x78-0x7b 10-bit slave addressing
* 0x7c-0x7f Reserved for future purposes
*/
if (addr < 0x08 || addr > 0x77)
return -EINVAL;
return 0;
}
/*********************************
* 再看一下i2c_default_probe函数 *
*********************************/
static int i2c_default_probe( struct i2c_adapter *adap, unsigned short addr)
{
int err;
union i2c_smbus_data dummy;
#ifdef CONFIG_X86
/*
* 这里是对intel特殊设备的检查,就不深入看下去了
*/
if (addr == 0x73 && (adap-> class & I2C_CLASS_HWMON)
&& i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
I2C_SMBUS_BYTE_DATA, &dummy);
else
#endif
/*
* 对特殊设备的检查
*/
if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
&& i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
I2C_SMBUS_QUICK, NULL);
/*
* i2c_check_functionality函数确定该i2c适配器所支持的通信方式
* 如果支持该方式则调用i2c_smbus_xfer函数
*/
else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
I2C_SMBUS_BYTE, &dummy);
else {
dev_warn(&adap->dev, "No suitable probing method supported/n" );
err = -EOPNOTSUPP;
}
return err >= 0;
}
/******************************
* i2c_check_functionality函数 *
******************************/
static inline int i2c_check_functionality( struct i2c_adapter *adap, u32 func)
{
return (func & i2c_get_functionality(adap)) == func;
}
static inline u32 i2c_get_functionality( struct i2c_adapter *adap)
{
/*
* 最终会调用adapter通信函数里面的functionality函数确定支持的
* 通信方式
*/
return adap->algo->functionality(adap);
}
/*********************
* i2c_smbus_xfer函数 *
*********************/
s32 i2c_smbus_xfer( struct i2c_adapter *adapter, u16 addr, unsigned short flags,
char read_write, u8 command, int protocol,
union i2c_smbus_data *data)
{
unsigned long orig_jiffies;
int try ;
s32 res;
flags &= I2C_M_TEN | I2C_CLIENT_PEC;
/*
* 如果适配器通信函数中的smbus_xfer函数存在,则直接利用它进行发送
*/
if (adapter->algo->smbus_xfer) {
i2c_lock_adapter(adapter);
/* Retry automatically on arbitration loss */
orig_jiffies = jiffies;
for (res = 0, try = 0; try <= adapter->retries; try ++) {
res = adapter->algo->smbus_xfer(adapter, addr, flags,
read_write, command,
protocol, data);
if (res != -EAGAIN)
break ;
if (time_after(jiffies,
orig_jiffies + adapter->timeout))
break ;
}
i2c_unlock_adapter(adapter);
} else
/*
* 否则利用i2c_smbus_xfer_emulated处理,此处也就是不支持smbus,
* 则得利用i2c模拟smbus命令
*/
res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
command, protocol, data);
return res;
}
/******************************
* i2c_smbus_xfer_emulated函数 *
******************************/
static s32 i2c_smbus_xfer_emulated( struct i2c_adapter *adapter, u16 addr,
unsigned short flags,
char read_write, u8 command, int size,
union i2c_smbus_data *data)
{
/* So we need to generate a series of msgs. In the case of writing, we
need to use only one message; when reading, we need two. We initialize
most things with sane defaults, to keep the code below somewhat
simpler. */
/*
* 为了进行通信我们必须创建msgs结构,当写时,我们需要一个这样的结构就
* 够了,当读的时候,我们需要两个
*/
unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
/*
* 读的时候需要两次
*/
int num = read_write == I2C_SMBUS_READ ? 2 : 1;
/*
* 填充需要的两个msg结构
*/
struct i2c_msg msg[2] = { { addr, flags, 1, msgbuf0 },
{ addr, flags | I2C_M_RD, 0, msgbuf1 }
};
int i;
u8 partial_pec = 0;
int status;
/*
* 将要发送的命令填充到msg0
*/
msgbuf0[0] = command;
switch (size) {
/*
* 快速传输,多用于确定该地址有应答
*/
case I2C_SMBUS_QUICK:
msg[0].len = 0;
/* Special case: The read/write field is used as data */
msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
I2C_M_RD : 0);
num = 1;
break ;
/*
* 字节传输,一次读写一个字节
*/
case I2C_SMBUS_BYTE:
if (read_write == I2C_SMBUS_READ) {
/* Special case: only a read! */
msg[0].flags = I2C_M_RD | flags;
num = 1;
}
break ;
/*
* 命令+单字节形式传输
*/
case I2C_SMBUS_BYTE_DATA:
if (read_write == I2C_SMBUS_READ)
msg[1].len = 1;
else {
msg[0].len = 2;
msgbuf0[1] = data->byte;
}
break ;
/*
* 命令+字形式传输
*/
case I2C_SMBUS_WORD_DATA:
if (read_write == I2C_SMBUS_READ)
msg[1].len = 2;
else {
msg[0].len = 3;
msgbuf0[1] = data->word & 0xff;
msgbuf0[2] = data->word >> 8;
}
break ;
/*
* 命令+字形式,需要应答
*/
case I2C_SMBUS_PROC_CALL:
num = 2; /* Special case */
read_write = I2C_SMBUS_READ;
msg[0].len = 3;
msg[1].len = 2;
msgbuf0[1] = data->word & 0xff;
msgbuf0[2] = data->word >> 8;
break ;
/*
* 多字节数据模式,字节数传输中不确定
*/
case I2C_SMBUS_BLOCK_DATA:
if (read_write == I2C_SMBUS_READ) {
msg[1].flags |= I2C_M_RECV_LEN;
msg[1].len = 1; /* block length will be added by
the underlying bus driver */
} else {
msg[0].len = data->block[0] + 2;
if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
dev_err(&adapter->dev,
"Invalid block write size %d/n" ,
data->block[0]);
return -EINVAL;
}
for (i = 1; i < msg[0].len; i++)
msgbuf0[i] = data->block[i-1];
}
break ;
/*
* 多字节数据传输,需要应答
*/
case I2C_SMBUS_BLOCK_PROC_CALL:
num = 2; /* Another special case */
read_write = I2C_SMBUS_READ;
if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
dev_err(&adapter->dev,
"Invalid block write size %d/n" ,
data->block[0]);
return -EINVAL;
}
msg[0].len = data->block[0] + 2;
for (i = 1; i < msg[0].len; i++)
msgbuf0[i] = data->block[i-1];
msg[1].flags |= I2C_M_RECV_LEN;
msg[1].len = 1; /* block length will be added by
the underlying bus driver */
break ;
/*
* 多字节数据传输,传输字节数确定
*/
case I2C_SMBUS_I2C_BLOCK_DATA:
if (read_write == I2C_SMBUS_READ) {
msg[1].len = data->block[0];
} else {
msg[0].len = data->block[0] + 1;
if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
dev_err(&adapter->dev,
"Invalid block write size %d/n" ,
data->block[0]);
return -EINVAL;
}
for (i = 1; i <= data->block[0]; i++)
msgbuf0[i] = data->block[i];
}
break ;
default :
dev_err(&adapter->dev, "Unsupported transaction %d/n" , size);
return -EOPNOTSUPP;
}
i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
&& size != I2C_SMBUS_I2C_BLOCK_DATA);
if (i) {
/* Compute PEC if first message is a write */
if (!(msg[0].flags & I2C_M_RD)) {
if (num == 1) /* Write only */
i2c_smbus_add_pec(&msg[0]);
else /* Write followed by read */
partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
}
/* Ask for PEC if last message is a read */
if (msg[num-1].flags & I2C_M_RD)
msg[num-1].len++;
}
/*
* 调用i2c_transfer传输
*/
status = i2c_transfer(adapter, msg, num);
if (status < 0)
return status;
/* Check PEC if last message is a read */
if (i && (msg[num-1].flags & I2C_M_RD)) {
status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
if (status < 0)
return status;
}
/*
* 将得到的数据回传给data
*/
if (read_write == I2C_SMBUS_READ)
switch (size) {
case I2C_SMBUS_BYTE:
data->byte = msgbuf0[0];
break ;
case I2C_SMBUS_BYTE_DATA:
data->byte = msgbuf1[0];
break ;
case I2C_SMBUS_WORD_DATA:
case I2C_SMBUS_PROC_CALL:
data->word = msgbuf1[0] | (msgbuf1[1] << 8);
break ;
case I2C_SMBUS_I2C_BLOCK_DATA:
for (i = 0; i < data->block[0]; i++)
data->block[i+1] = msgbuf1[i];
break ;
case I2C_SMBUS_BLOCK_DATA:
case I2C_SMBUS_BLOCK_PROC_CALL:
for (i = 0; i < msgbuf1[0] + 1; i++)
data->block[i] = msgbuf1[i];
break ;
}
return 0;
}
/*******************
* i2c_transfer函数 *
*******************/
int i2c_transfer( struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
unsigned long orig_jiffies;
int ret, try ;
/* REVISIT the fault reporting model here is weak:
*
* - When we get an error after receiving N bytes from a slave,
* there is no way to report "N".
*
* - When we get a NAK after transmitting N bytes to a slave,
* there is no way to report "N" ... or to let the master
* continue executing the rest of this combined message, if
* that's the appropriate response.
*
* - When for example "num" is two and we successfully complete
* the first message but get an error part way through the
* second, it's unclear whether that should be reported as
* one (discarding status on the second message) or errno
* (discarding status on the first one).
*/
/*
* 如果适配器的adap->algo->master_xfer函数存在,则调用它把
* 该信息发送出去
*/
if (adap->algo->master_xfer) {
#ifdef DEBUG
for (ret = 0; ret < num; ret++) {
dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
"len=%d%s/n" , ret, (msgs[ret].flags & I2C_M_RD)
? 'R' : 'W' , msgs[ret].addr, msgs[ret].len,
(msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "" );
}
#endif
if (in_atomic() || irqs_disabled()) {
ret = i2c_trylock_adapter(adap);
if (!ret)
/* I2C activity is ongoing. */
return -EAGAIN;
} else {
i2c_lock_adapter(adap);
}
/* Retry automatically on arbitration loss */
orig_jiffies = jiffies;
for (ret = 0, try = 0; try <= adap->retries; try ++) {
ret = adap->algo->master_xfer(adap, msgs, num);
if (ret != -EAGAIN)
break ;
if (time_after(jiffies, orig_jiffies + adap->timeout))
break ;
}
i2c_unlock_adapter(adap);
return ret;
} else {
dev_dbg(&adap->dev, "I2C level transfers not supported/n" );
return -EOPNOTSUPP;
}
}
/**********************************************
* 回过头来看一下i2c_new_device这个实例化函数*
**********************************************/
struct i2c_client *
i2c_new_device( struct i2c_adapter *adap, struct i2c_board_info const *info)
{
struct i2c_client *client;
int status;
/*
* 为需要实例化的设备申请内存
*/
client = kzalloc( sizeof *client, GFP_KERNEL);
if (!client)
return NULL;
/*
* 指定适配器以及platform_data
*/
client->adapter = adap;
client->dev.platform_data = info->platform_data;
/*
* info->archdata存在将其赋值给client
*/
if (info->archdata)
client->dev.archdata = *info->archdata;
/*
* 标志、地址、中断号、名字
*/
client->flags = info->flags;
client->addr = info->addr;
client->irq = info->irq;
strlcpy(client->name, info->type, sizeof (client->name));
/* Check for address validity */
/*
* 检查地址有效性
*/
status = i2c_check_client_addr_validity(client);
if (status) {
dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx/n" ,
client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
goto out_err_silent;
}
/* Check for address business */
/*
* 检查地址是否被使用
*/
status = i2c_check_addr_busy(adap, client->addr);
if (status)
goto out_err;
/*
* 内嵌标准device的赋值
*/
client->dev.parent = &client->adapter->dev;
client->dev.bus = &i2c_bus_type;
client->dev.type = &i2c_client_type;
#ifdef CONFIG_OF
client->dev.of_node = info->of_node;
#endif
dev_set_name(&client->dev, "%d-%04x" , i2c_adapter_id(adap),
client->addr);
/*
* 注册内嵌的标准device
*/
status = device_register(&client->dev);
if (status)
goto out_err;
dev_dbg(&adap->dev, "client [%s] registered with bus id %s/n" ,
client->name, dev_name(&client->dev));
return client;
out_err:
dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
"(%d)/n" , client->name, client->addr, status);
out_err_silent:
kfree(client);
return NULL;
}
|
以上就是i2c通用driver添加的流程,下面看一下设备端,适配器的流程
四、i2c_add_adapter分析
1 int i2c_add_adapter(struct i2c_adapter *adapter) 2 { 3 int id, res = 0; 4 retry: 5 /* 6 * 得到bus号并将其插入搜索树,便于高效查找 7 * 此处不做深入分析 8 */ 9 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0) 10 return -ENOMEM; 11 mutex_lock(&core_lock); 12 /* "above" here means "above or equal to", sigh */ 13 res = idr_get_new_above(&i2c_adapter_idr, adapter, 14 __i2c_first_dynamic_bus_num, &id); 15 mutex_unlock(&core_lock); 16 if (res < 0) { 17 if (res == -EAGAIN) 18 goto retry; 19 return res; 20 } 21 22 /* 23 * 适配器号赋值,代表i2c的编号 24 */ 25 adapter->nr = id; 26 return i2c_register_adapter(adapter); 27 } 28 /*********************************************** 29 * 来看一下适配器的注册函数i2c_register_adapter* 30 ***********************************************/ 31 static int i2c_register_adapter(struct i2c_adapter *adap) 32 { 33 int res = 0; 34 /* Can't register until after driver model init */ 35 36 /* 37 * bus私有属性结构不能为NULL 38 */ 39 if (unlikely(WARN_ON(!i2c_bus_type.p))) { 40 res = -EAGAIN; 41 goto out_list; 42 } 43 rt_mutex_init(&adap->bus_lock); 44 mutex_init(&adap->userspace_clients_lock); 45 INIT_LIST_HEAD(&adap->userspace_clients); 46 /* Set default timeout to 1 second if not already set */ 47 48 /* 49 * 超时时间设置为1s 50 */ 51 if (adap->timeout == 0) 52 adap->timeout = HZ; 53 54 /* 55 * 设置内嵌device的名字,指定bus,指定自身类型为适配器 56 */ 57 dev_set_name(&adap->dev, "i2c-%d", adap->nr); 58 adap->dev.bus = &i2c_bus_type; 59 adap->dev.type = &i2c_adapter_type; 60 61 /* 62 * 注册内嵌的标准device,此时将会出现在i2c_bus目录下 63 */ 64 res = device_register(&adap->dev); 65 if (res) 66 goto out_list; 67 dev_dbg(&adap->dev, "adapter [%s] registered/n", adap->name); 68 #ifdef CONFIG_I2C_COMPAT 69 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev, 70 adap->dev.parent); 71 if (res) 72 dev_warn(&adap->dev, 73 "Failed to create compatibility class link/n"); 74 #endif 75 /* create pre-declared device nodes */ 76 77 /* 78 * client可以静态的添加,如果发现适配器号也就是i2c号 79 * 小于动态bus号,说明设备静态添加,则进行扫描 80 */ 81 if (adap->nr < __i2c_first_dynamic_bus_num) 82 i2c_scan_static_board_info(adap); 83 /* Notify drivers */ 84 mutex_lock(&core_lock); 85 86 /* 87 * 遍历bus的驱动端,对于每一个driver都调用__process_new_adapter 88 */ 89 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter); 90 mutex_unlock(&core_lock); 91 return 0; 92 out_list: 93 mutex_lock(&core_lock); 94 idr_remove(&i2c_adapter_idr, adap->nr); 95 mutex_unlock(&core_lock); 96 return res; 97 } 98 /******************************************* 99 * 先来看一下i2c_scan_static_board_info函数* 100 *******************************************/ 101 static void i2c_scan_static_board_info(struct i2c_adapter *adapter) 102 { 103 struct i2c_devinfo *devinfo; 104 down_read(&__i2c_board_lock); 105 /* 106 * 遍历全局的i2c的client链表,找到该适配器器所代表 107 * 总线上挂接的设备,用i2c_new_device实例化它, 108 * i2c_new_device在前面已经分析过了,不在赘述 109 */ 110 list_for_each_entry(devinfo, &__i2c_board_list, list) { 111 if (devinfo->busnum == adapter->nr 112 && !i2c_new_device(adapter, 113 &devinfo->board_info)) 114 dev_err(&adapter->dev, 115 "Can't create device at 0x%02x/n", 116 devinfo->board_info.addr); 117 } 118 up_read(&__i2c_board_lock); 119 } 120 /************************************** 121 * 再来看一下__process_new_adapter函数* 122 **************************************/ 123 static int __process_new_adapter(struct device_driver *d, void *data) 124 { 125 /* 126 * 同样的归宿到了i2c_do_add_adapter下面,与前面分析的 127 * __process_new_driver相似,只是driver是针对适配器, 128 * 而这次没有这个限制.jk注:应该说此处driver针对的是adapter, 所以不用再判断驱动类型是否为adapter. 129 */ 130 return i2c_do_add_adapter(to_i2c_driver(d), data); 131 }
依据以上的分析画出流程图如下:
i2c_driver依据内部成员的设定,会走不同的分支,产生不同的作用,下面根据流程前后顺序总结一下:
当发现的是i2c_bus上的一个client时(发生在标准driver注册的匹配):
1、首先会进入到bus定义的匹配函数i2c_device_match如果定义了CONFIG_OF_DEVICE宏并且内部的标准
driver结构定义了of_match_table成员,则利用其进行匹配;
2、否则如果driver->id_table成员设定,则利用其进行匹配,否则匹配失败。
3、如果匹配成功会调用i2c_bus的i2c_device_probe函数,该函数会判断,如果该i2c_driver的probe成员
或者id_table成员为NULL,则返回,否则利用i2c_driver->probe初始化这个client。
当发现的是代表该i2c_bus的上的adapter时(发生在bus的遍历):
1、如果该driver的driver->detect或者address_list为NULL退出
2、如果该adapter->class和driver->class不匹配也退出
3、如果以上都成立最终会调用driver->detect函数,实例化支持的client
4、如果driver->attach_adapter也被设定,含会走旧式的路线,直接利用driver->attach_adapter进行探测
不过,一般不会让3&&4这种结果出现
可见,i2c_driver的设置非常灵活,抓住关键成员就不难掌握其流程。
五、i2c关于dev下节点的产生及其操作
该部分的代码位于rivers/i2c/i2c-dev.c下,我们从头看起:
1 static int __init i2c_dev_init(void) 2 { 3 int res; 4 printk(KERN_INFO "i2c /dev entries driver/n"); 5 /* 6 * 注册名称为i2c主设备号为89的一个字符设备 7 */ 8 res = register_chrdev(I2C_MAJOR, "i2c", &i2cdev_fops); 9 if (res) 10 goto out; 11 /* 12 * 在class下产生i2c-dev节点,用于自动产生设备文件 13 */ 14 i2c_dev_class = class_create(THIS_MODULE, "i2c-dev"); 15 if (IS_ERR(i2c_dev_class)) { 16 res = PTR_ERR(i2c_dev_class); 17 goto out_unreg_chrdev; 18 } 19 20 /* 21 * i2c_add_driver在上面已经分析过了 22 */ 23 res = i2c_add_driver(&i2cdev_driver); 24 if (res) 25 goto out_unreg_class; 26 return 0; 27 out_unreg_class: 28 class_destroy(i2c_dev_class); 29 out_unreg_chrdev: 30 unregister_chrdev(I2C_MAJOR, "i2c"); 31 out: 32 printk(KERN_ERR "%s: Driver Initialisation failed/n", __FILE__); 33 return res; 34 } 35 //其中i2cdev_driver结构为: 36 static struct i2c_driver i2cdev_driver = { 37 .driver = { 38 .name = "dev_driver", 39 }, 40 .attach_adapter = i2cdev_attach_adapter, 41 .detach_adapter = i2cdev_detach_adapter, 42 };
由于没有关于client的支持表的定义,因此匹配client时就会直接返回, 由于存在成员attach_adapter,因此当匹配adapter时会进入该函数。
1 /************************************ 2 * 来看一下i2cdev_attach_adapter函数* 3 ************************************/ 4 static int i2cdev_attach_adapter(struct i2c_adapter *adap) 5 { 6 struct i2c_dev *i2c_dev; 7 int res; 8 i2c_dev = get_free_i2c_dev(adap); 9 if (IS_ERR(i2c_dev)) 10 return PTR_ERR(i2c_dev); 11 /* register this i2c device with the driver core */ 12 13 /* 14 * 以上面注册的i2c_dev_class为父节点在目录class/i2c-dev下 15 * 产生i2c-0之类的节点,这样上层udev会根据该节点在dev目录下 16 * 自动创建对应的设备文件 17 */ 18 i2c_dev->dev = device_create(i2c_dev_class, &adap->dev, 19 MKDEV(I2C_MAJOR, adap->nr), NULL, 20 "i2c-%d", adap->nr); 21 if (IS_ERR(i2c_dev->dev)) { 22 res = PTR_ERR(i2c_dev->dev); 23 goto error; 24 } 25 26 /* 27 * 产生相关属性文件 28 */ 29 res = device_create_file(i2c_dev->dev, &dev_attr_name); 30 if (res) 31 goto error_destroy; 32 pr_debug("i2c-dev: adapter [%s] registered as minor %d/n", 33 adap->name, adap->nr); 34 return 0; 35 error_destroy: 36 device_destroy(i2c_dev_class, MKDEV(I2C_MAJOR, adap->nr)); 37 error: 38 return_i2c_dev(i2c_dev); 39 return res; 40 }
通过以上分析可以看到i2c-dev层,找到一个adapter就会自动为其创建设备节点,形式类似于i2c-*,那么当应用层open对应的设备节点的时候,内核会自动调用刚才注册的字符设备的操作函数, 我们先来看一下刚才注册的字符设备的操作集:
1 static const struct file_operations i2cdev_fops = { 2 .owner = THIS_MODULE, 3 .llseek = no_llseek, 4 .read = i2cdev_read, 5 .write = i2cdev_write, 6 .unlocked_ioctl = i2cdev_ioctl, 7 .open = i2cdev_open, 8 .release = i2cdev_release, 9 };
按照用户层的流程先看一下open函数i2cdev_open:
1 static int i2cdev_open(struct inode *inode, struct file *file) 2 { 3 unsigned int minor = iminor(inode); //得到次设备号 4 struct i2c_client *client; 5 struct i2c_adapter *adap; 6 struct i2c_dev *i2c_dev; 7 8 /* 9 * 次设备号其实是对应i2c总线号,下面函数遍历由次设备构成的链表 10 * i2c_dev_list,找到上面挂接的号码对应的i2c_dev结构 11 */ 12 i2c_dev = i2c_dev_get_by_minor(minor); 13 14 if (!i2c_dev) //没找到,出错 15 return -ENODEV; 16 adap = i2c_get_adapter(i2c_dev->adap->nr); //得到绑定的adapter.jk: why need get 17 if (!adap) 18 return -ENODEV; 19 /* This creates an anonymous i2c_client, which may later be 20 * pointed to some address using I2C_SLAVE or I2C_SLAVE_FORCE. 21 * 22 * This client is ** NEVER REGISTERED ** with the driver model 23 * or I2C core code!! It just holds private copies of addressing 24 * information and maybe a PEC flag. 25 */ 26 client = kzalloc(sizeof(*client), GFP_KERNEL); //申请个client内存 27 if (!client) { 28 i2c_put_adapter(adap); 29 return -ENOMEM; 30 } 31 32 //命名,依据adapter 33 snprintf(client->name, I2C_NAME_SIZE, "i2c-dev %d", adap->nr); 34 35 //指定driver,代表创建他的driver 36 client->driver = &i2cdev_driver; 37 38 //指定适配器 39 client->adapter = adap; 40 //通过file的私有成员传递创建的这个client 41 file->private_data = client; 42 return 0; 43 }
由open可见,我们要操作i2c下的设备,始终是需要通过adapter,物理上也是如此,操作设备都是通过控制器进行读写的,因此我们打开的始终是adapter而open过程中会创建client,来表述我们主观上是要操作设备。下面在看一下read函数:
1 static ssize_t i2cdev_read(struct file *file, char __user *buf, size_t count, 2 loff_t *offset) 3 { 4 char *tmp; 5 int ret; 6 //得到由open传递过来的创建的client 7 struct i2c_client *client = file->private_data; 8 9 //大小不能超过8192 10 if (count > 8192) 11 count = 8192; 12 13 //申请count大小内存 14 tmp = kmalloc(count, GFP_KERNEL); 15 if (tmp == NULL) 16 return -ENOMEM; 17 pr_debug("i2c-dev: i2c-%d reading %zu bytes./n", 18 iminor(file->f_path.dentry->d_inode), count); 19 20 //调用i2c_master_recv进行进一步传送 21 ret = i2c_master_recv(client, tmp, count); 22 if (ret >= 0) 23 //read的信息反馈给用户 24 ret = copy_to_user(buf, tmp, count) ? -EFAULT : ret; 25 kfree(tmp); 26 return ret; 27 } 28 /**************************** 29 * 其中i2c_master_recv函数为* 30 ****************************/ 31 int i2c_master_recv(struct i2c_client *client, char *buf, int count) 32 { 33 struct i2c_adapter *adap = client->adapter; 34 struct i2c_msg msg; 35 int ret; 36 37 //利用msg组织信息结构 38 msg.addr = client->addr; 39 msg.flags = client->flags & I2C_M_TEN; 40 msg.flags |= I2C_M_RD; 41 msg.len = count; 42 msg.buf = buf; 43 44 //调用i2c_transfer发送 45 ret = i2c_transfer(adap, &msg, 1); 46 /* If everything went ok (i.e. 1 msg transmitted), return #bytes 47 transmitted, else error code. */ 48 return (ret == 1) ? count : ret; 49 }
i2c_transfer函数上面已经分析过了,其会最终调用client所在adapter的adap->algo->master_xfer函数发送。
六、总结
分析了linux下i2c子系统模型及其关键点,针对核心的平台无关代码进行了描述,以上为个人观点,如有不妥,还望指正 ^_^