Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 43907 | Accepted: 12862 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
#include <iostream> #include <stdio.h> using namespace std; #define N 111111 __int64 l[N<<2],flag[N<<2]; void build(__int64 num,__int64 s,__int64 e) { flag[num]=0; if(s==e) { scanf("%I64d",&l[num]); return ; } __int64 mid=(s+e)>>1; build(num<<1,s,mid); build(num<<1|1,mid+1,e); l[num]=l[num<<1]+l[num<<1|1]; } void update(__int64 num ,__int64 s,__int64 e,__int64 a, __int64 b,__int64 c) { if(a<=s&&b>=e) { flag[num]+=c; l[num]+=(e-s+1)*c; return ; } if(flag[num]) { flag[num<<1]+=flag[num]; flag[num<<1|1]+=flag[num]; l[num<<1]+=(e-s+1-((e-s+1)>>1))*flag[num]; l[num<<1|1]+=((e-s+1)>>1)*flag[num]; flag[num]=0; } __int64 mid=(s+e)>>1; if(mid>=a) { update(num<<1,s,mid,a,b,c); } if(b>mid) { update(num<<1|1,mid+1,e,a,b,c); } l[num]=l[num<<1]+l[num<<1|1]; } __int64 query(__int64 num,__int64 s,__int64 e ,__int64 a,__int64 b) { if(a<=s&&b>=e) { return l[num]; } if(flag[num]) { flag[num<<1]+=flag[num]; flag[num<<1|1]+=flag[num]; l[num<<1]+=(e-s+1-((e-s+1)>>1))*flag[num]; l[num<<1|1]+=((e-s+1)>>1)*flag[num]; flag[num]=0; } __int64 mid=(s+e)>>1; __int64 re=0; if(mid>=a)re+=query(num<<1,s,mid,a,b); if(mid<b) re+=query(num<<1|1,mid+1,e,a,b); return re; } int main() { __int64 n,q,a,b,d; char c; while(scanf("%I64d%I64d",&n,&q)!=EOF) { build(1,1,n); while(q--) { getchar(); if((c=getchar())=='Q') { scanf("%I64d%I64d",&a,&b); printf("%I64d\n",query(1,1,n,a,b)); } else if(c=='C') { scanf("%I64d%I64d%I64d",&a,&b,&d); update(1,1,n,a,b,d); } } } return 0; }这题用树状数组来做,更加简单的多,原理当然还是一样,只是树状数组写的更简单,毫无疑问,用树状数组,更加省空间,不会出现像线段树那样一搞就爆了内存!
#include <iostream> #include <stdio.h> #include <string.h> using namespace std; #define MAXN 50005 int prime[MAXN],tree[12][12][MAXN],n; int lowbit(int x) { return x&(-x); } int update(int i,int j,int x,int c) { if(x==0) return -1; while(x<=n) { tree[i][j][x]+=c; x=x+lowbit(x); } return -1; } int getsum(int i,int j,int x) { int sum=0; while(x>0) { sum+=tree[i][j][x]; x=x-lowbit(x); } return sum; } int main () { int i,asknum,ask,pos,sum,a,b,k,c; while(scanf("%d",&n)!=EOF) { memset(tree,0,sizeof(tree)); for(i=1;i<=n;i++) { scanf("%d",&prime[i]); } scanf("%d",&asknum); while(asknum--) { scanf("%d",&ask); if(ask==1) { scanf("%d%d%d%d",&a,&b,&k,&c); int kk=(b-a)/k; update(k,a%k,a,c); update(k,a%k,b+1,-c); } else { scanf("%d",&pos); sum=prime[pos]; for(i=1;i<=10;i++) { sum+=getsum(i,pos%i,pos); } printf("%d\n",sum); } } } return 0; }