sparkStreaming在线过滤黑名单

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
/**
在线黑名单过滤程序
 * 
 * 背景描述:在广告点击计费系统中,我们在线过滤掉黑名单的点击,进而保护广告商的利益,只进行有效的广告点击计费
 *  或者在防刷评分(或者流量)系统,过滤掉无效的投票或者评分或者流量;
 * 实现技术:使用transform Api直接基于RDD编程,进行join操作
 * 
 */
object OnlineBlackListFilter {
    def main(args: Array[String]){
      /**
       * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,
       * 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置
       * 为local,则代表Spark程序在本地运行,特别适合于机器配置条件非常差(例如
       * 只有1G的内存)的初学者       * 
       */
      val conf = new SparkConf() //创建SparkConf对象
      conf.setAppName("OnlineBlackListFilter") //设置应用程序的名称,在程序运行的监控界面可以看到名称
      conf.setMaster("spark://Master:7077") //此时,程序在Spark集群
               
         
      val ssc = new StreamingContext(conf, Seconds(30))
      
      /**
       * 黑名单数据准备,实际上黑名单一般都是动态的,例如在Redis或者数据库中,黑名单的生成往往有复杂的业务
       * 逻辑,具体情况算法不同,但是在Spark Streaming进行处理的时候每次都能工访问完整的信息
       */
      val blackList = Array(("hadoop", true),("mahout", true))
      val blackListRDD = ssc.sparkContext.parallelize(blackList, 8)
      
      val adsClickStream = ssc.socketTextStream("Master", 9999)
      
      /**
       * 此处模拟的广告点击的每条数据的格式为:time、name
       * 此处map操作的结果是name、(time,name)的格式
       */
      val adsClickStreamFormatted = adsClickStream.map { ads => (ads.split(" ")(1), ads) }
      adsClickStreamFormatted.transform(userClickRDD => {
        //通过leftOuterJoin操作既保留了左侧用户广告点击内容的RDD的所有内容,又获得了相应点击内容是否在黑名单中
        val joinedBlackListRDD = userClickRDD.leftOuterJoin(blackListRDD)
        
        /**
         * 进行filter过滤的时候,其输入元素是一个Tuple:(name,((time,name), boolean))
         * 其中第一个元素是黑名单的名称,第二元素的第二个元素是进行leftOuterJoin的时候是否存在在值
         * 如果存在的话,表面当前广告点击是黑名单,需要过滤掉,否则的话则是有效点击内容;
         */
        val validClicked = joinedBlackListRDD.filter(joinedItem => {
          if(joinedItem._2._2.getOrElse(false))
          {
            false
          } else {
            true
          }
          
        })
        
        validClicked.map(validClick => {validClick._2._1})
      }).print
      
      /**
       * 计算后的有效数据一般都会写入Kafka中,下游的计费系统会从kafka中pull到有效数据进行计费
       */
      ssc.start()
      ssc.awaitTermination()
      
    }
}

你可能感兴趣的:(sparkStreaming在线过滤黑名单)