题目都告诉你了,很裸的网络流……
在第一问基础上
对于每条边,另外加一条带费用的边,容量只要大于等于k就行
在此基础上做一遍费用流
然后搞定……
PS:我做的时候脑残了退流的时候一个单位一个单位的退……
//Lib #include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<ctime> #include<iostream> #include<algorithm> #include<vector> #include<string> #include<queue> using namespace std; //Macro #define rep(i,a,b) for(int i=a,tt=b;i<=tt;++i) #define drep(i,a,b) for(int i=a,tt=b;i>=tt;--i) #define erep(i,e,x) for(int i=x;i;i=e[i].next) #define irep(i,x) for(__typedef(x.begin()) i=x.begin();i!=x.end();i++) #define read() (strtol(ipos,&ipos,10)) #define sqr(x) ((x)*(x)) #define pb push_back #define PS system("pause"); typedef long long ll; typedef pair<int,int> pii; const int oo=~0U>>1; const double inf=1e100; const double eps=1e-6; string name="",in=".in",out=".out"; //Var struct E { int node,next,cap,cost; }e[20008]; struct ED { int a,b,c; }edge[5008]; queue<int> q; int tot=1,n,m,k,st,ed,ans; int dis[1008],h[1008],pre[1008],pree[1008]; bool vis[1008]; void add(int a,int b,int c,int d) { e[++tot].next=h[a];e[tot].node=b;e[tot].cap=c;e[tot].cost=d;h[a]=tot; e[++tot].next=h[b];e[tot].node=a;e[tot].cap=0;e[tot].cost=-d;h[b]=tot; } void Init() { scanf("%d%d%d",&n,&m,&k);st=1;ed=n; int a,b,c,d; rep(i,1,m) { scanf("%d%d%d%d",&a,&b,&c,&d); add(a,b,c,0); edge[i].a=a;edge[i].b=b;edge[i].c=d; } } bool BFS() { memset(dis,-1,sizeof dis); q.push(ed);int u,v;bool flag=false;dis[ed]=0; while(!q.empty()) { u=q.front();q.pop(); erep(i,e,h[u]) if(e[i^1].cap&&dis[v=e[i].node]==-1) { dis[v]=dis[u]+1; q.push(v); if(v==st)flag=true; } } return flag; } int DFS(int u,int low) { int ret=low,tmp,v; if(u==ed)return low; erep(i,e,h[u]) if(e[i].cap&&dis[u]==dis[v=e[i].node]+1) { tmp=DFS(v,min(low,e[i].cap)); e[i].cap-=tmp; e[i^1].cap+=tmp; low-=tmp; if(!low)break; } if(ret==low)dis[u]=-1; return ret-low; } void Dinic() { int ans=0,flow; while(BFS()) while(flow=DFS(st,oo)) ans+=flow; printf("%d ",ans); } void SPFA() { memset(dis,55,sizeof dis); q.push(st);int u,v;dis[st]=0; while(!q.empty()) { u=q.front();q.pop();vis[u]=false; erep(i,e,h[u]) if(e[i].cap&&dis[v=e[i].node]>dis[u]+e[i].cost) { dis[v]=dis[u]+e[i].cost;pre[v]=u;pree[v]=i; if(!vis[v])vis[v]=true,q.push(v); } } } int Flow() { int tmp=ed,ret=0,minn=k; while(tmp!=st) { ret+=e[pree[tmp]].cost; minn=min(minn,e[pree[tmp]].cap); tmp=pre[tmp]; } tmp=ed; while(tmp!=st) { e[pree[tmp]].cap-=minn; e[pree[tmp]^1].cap+=minn; tmp=pre[tmp]; } k-=minn; return ret*minn; } void Cost_Flow() { rep(i,1,m)add(edge[i].a,edge[i].b,k,edge[i].c); while(k) { SPFA(); ans+=Flow(); } cout<<ans<<endl; } int main() { // freopen((name+in).c_str(),"r",stdin); // freopen((name+out).c_str(),"w",stdout); Init(); Dinic(); Cost_Flow(); return 0; }