http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2031
I I U P C 2 0 0 6 |
|
Problem G: Going in Cycle!! |
|
Input: standard input Output: standard output |
|
|
|
You are given a weighted directed graph with n vertices and m edges. Each cycle in the graph has a weight, which equals to sum of its edges. There are so many cycles in the graph with different weights. In this problem we want to find a cycle with the minimum mean.
|
|
Input |
|
The first line of input gives the number of cases, N. N test cases follow. Each one starts with two numbers n and m. m lines follow, each has three positive number a, b, c which means there is an edge from vertex a to b with weight of c.
|
|
Output |
|
For each test case output one line containing “Case #x: ” followed by a number that is the lowest mean cycle in graph with 2 digits after decimal place, if there is a cycle. Otherwise print “No cycle found.”.
|
|
Constraints |
|
- n ≤ 50 - a, b ≤ n - c ≤ 10000000
|
|
Sample Input |
Output for Sample Input |
2 |
Case #1: No cycle found. |
大体思路:使用二分法求解,对于每一个猜测值mid,只需要判断是否存在平均值小于mid的回路。如何判断呢?假设存在一个包含K条边的回路,回路上个条边的权值为w1,w2
,,wk,那么平均值小于mid意味着w1+w2+w3+.....<K*mid即:(w1-mid)+(w2-mid)+(w3-mid)+....+(wk-mid)<0;换句话说,只要把每条边(a,b)的权值w(a,b)换成w(a,b)-mid,再判断是否有负权的回路即可。
#include<iostream> #include<cstring> #include<cstdio> #include<string> #include<algorithm> #include<queue> using namespace std; #define eps 1e-8 #define INF 0x3f3f3f3f #define MAXN 100 struct node { int to,next; double dis; }edge[MAXN*MAXN]; bool in[MAXN]; int head[MAXN],en; int n,m,cnt[MAXN]; double dis[MAXN]; void add(int u,int v,double dis) { edge[en].to=v; edge[en].dis=dis; edge[en].next=head[u]; head[u]=en++; } bool spfa() { queue<int> q; for(int i=1;i<=n;i++) { dis[i]=0; cnt[i]=0; in[i]=true; q.push(i); } while(!q.empty()) { int u=q.front(); in[u]=false; q.pop(); for(int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].to; if(dis[u]+edge[i].dis<dis[v]) { dis[v]=dis[u]+edge[i].dis; if(!in[v]) { q.push(v); in[v]=true; if(++cnt[v]>=n) return false; } } } } return true; } bool jud(double x) { bool fg=0; for(int i=1;i<=n;i++) for(int j=head[i];j!=-1;j=edge[j].next) edge[j].dis-=x; if(!spfa()) fg=1; for(int i=1;i<=n;i++) for(int j=head[i];j!=-1;j=edge[j].next) edge[j].dis+=x; return fg; } int main() { int cs; scanf("%d",&cs); for(int t=1;t<=cs;t++) { int u,v; double x; double l=INF,r=0,mid; scanf("%d%d",&n,&m); memset(head,-1,sizeof(head));en=0; for(int i=0;i<m;i++) { scanf("%d%d%lf",&u,&v,&x); add(u,v,x); l=min(l,x); r=max(r,x); } printf("Case #%d: ",t); if(!jud(r+1)) { printf("No cycle found.\n"); } else { while(r-l>eps) { mid=l+(r-l)/2; if(jud(mid)) r=mid; else l=mid; } printf("%.2lf\n",r); } } return 0; }