hdu1171_多重背包转化为01背包

背包九讲:http://www.oiers.cn/pack/Index.html

01背包问题

题目

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度

以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N
    for v=V..0
        f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

procedure ZeroOnePack(cost,weight)
    for v=V..cost
        f[v]=max{f[v],f[v-cost]+weight}

注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

有了这个过程以后,01背包问题的伪代码就可以这样写:

for i=1..N
    ZeroOnePack(c[i],w[i]);

初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

一个常数优化

前面的伪代码中有 for v=V..1,可以将这个循环的下限进行改进。

由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。以此类推,对以第j个背包,其实只需要知道到f[v-sum{w[j..n]}]即可,即代码中的

for i=1..N
    for v=V..0

可以改成

for i=1..n
    bound=max{V-sum{w[i..n]},c[i]}
    for v=V..bound

这对于V比较大时是有用的。

小结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

如果用基本01背包做,时间为1921ms

#include<iostream> #include<cstdio> #include<memory.h> using namespace std; int dp[300005]; int a[7005]; int n; int max(int a,int b) { return a>b?a:b; } int main() { while(scanf("%d",&n)!=EOF&&n>=0) { memset(dp,0,sizeof(dp));// 蛋疼,忘了这一步 int i,j; int size=0; int sum=0; int x,y; for(i=0;i<n;i++) { scanf("%d%d",&x,&y); sum+=x*y; while(y--) { a[size++]=x; } } int temp=sum; sum/=2; for(i=0;i<size;i++) { for(j=a[i];j<=sum;j++)//个人体会,01背包无论逆序还是顺序都可以,如果是逆序的话,就保证了每一个物品相对当前体积是不会被选1次以上的, //如果是顺序的话,如果当前体积下物品被选到,那么之前的同样的体积下该物品一定不会被选到 dp[j]=max(dp[j],dp[j-a[i]]+a[i]); } temp-=dp[sum]; printf("%d %d/n",temp,dp[sum]); } return 0; } 多重背包问题 题目 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 基本算法 这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程: f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]} 复杂度是O(V*Σn[i])。 转化为01背包问题 另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为Σn[i]的01背包问题,直接求解,复杂度仍然是O(V*Σn[i])。 但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。 方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。 分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。 这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为<math>O(V*Σlog n[i])的01背包问题,是很大的改进。 下面给出O(log amount)时间处理一件多重背包中物品的过程,其中amount表示物品的数量: procedure MultiplePack(cost,weight,amount) if cost*amount>=V CompletePack(cost,weight) return integer k=1 while k<amount ZeroOnePack(k*cost,k*weight) amount=amount-k k=k*2 ZeroOnePack(amount*cost,amount*weight) 希望你仔细体会这个伪代码,如果不太理解的话,不妨翻译成程序代码以后,单步执行几次,或者头脑加纸笔模拟一下,也许就会慢慢理解了。 O(VN)的算法 多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。 hdu1171用多重背包做,时间少了很多才97ms #include<iostream> #include<cstdio> #include<memory.h> using namespace std; int dp[130005]; int a[5005]; int num[55]; int n; void solve(int weigth,int value,int sum) { int i; for(i=sum;i>=weigth;i--) dp[i]=max(dp[i],dp[i-weigth]+value); } int main() { while(scanf("%d",&n)!=EOF&&n>=0) { int i,j; int sum=0; memset(dp,0,sizeof(dp)); for(i=0;i<n;i++) { scanf("%d%d",&a[i],&num[i]); sum+=a[i]*num[i]; } int temp=sum; sum>>=1; for(i=0;i<n;i++) { int k=1; while(num[i]>=k) { solve(a[i]*k,a[i]*k,sum); num[i]-=k; k<<=1; } solve(a[i]*k,a[i]*k,sum); } temp-=dp[sum]; printf("%d %d/n",temp,dp[sum]); } return 0; }  

 

你可能感兴趣的:(c,优化,算法,Integer,ini)