实例一:显示虚拟内存使用情况
命令:
vmstat
输出:
[root@localhost ~]
#
vmstat 5 6
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
r b swpd free buff cache si so bi bo
in cs us sy id wa st
0 0 0 3029876 199616 690980 0 0 0 2 3 2 0 0 100 0 0
0 0 0 3029752 199616 690980 0 0 0 41 1009 39 0 0 100 0 0
0 0 0 3029752 199616 690980 0 0 0 3 1004 36 0 0 100 0 0
0 0 0 3029752 199616 690980 0 0 0 4 1004 36 0 0 100 0 0
0 0 0 3029752 199616 690980 0 0 0 6 1003 33 0 0 100 0 0
0 0 0 3029752 199616 690980 0 0 0 5 1003 33 0 0 100 0 0
说明:
字段说明:
Procs(进程):
r: 运行队列中进程数量,这个值也可以判断是否需要增加CPU。(长期大于1)
b: 等待IO的进程数量
Memory(内存):
swpd: 使用虚拟内存大小,如果swpd的值不为0,但是SI,SO的值长期为0,这种情况不会影响系统性能。
free: 可用内存大小
buff: 用作缓冲的内存大小
cache: 用作缓存的内存大小,如果cache的值大的时候,说明cache处的文件数多,如果频繁访问到的文件都能被cache处,那么磁盘的读IO bi会非常小。
Swap:
si: 每秒从交换区写到内存的大小,由磁盘调入内存。
so: 每秒写入交换区的内存大小,由内存调入磁盘。
注意:内存够用的时候,这2个值都是0,如果这2个值长期大于0时,系统性能会受到影响,磁盘IO和CPU资源都会被消耗。有些朋友看到空闲内存(free)很少的或接近于0时,就认为内存不够用了,不能光看这一点,还要结合si和so,如果free很少,但是si和so也很少(大多时候是0),那么不用担心,系统性能这时不会受到影响的。
IO:(现在的Linux版本块的大小为1024bytes)
bi: 每秒读取的块数
bo: 每秒写入的块数
注意:随机磁盘读写的时候,这2个值越大(如超出1024k),能看到CPU在IO等待的值也会越大。
系统:
in: 每秒中断数,包括时钟中断。
cs: 每秒上下文切换数。
注意:上面2个值越大,会看到由内核消耗的CPU时间会越大。
CPU(以百分比表示):
us: 用户进程执行时间(user time)
us的值比较高时,说明用户进程消耗的CPU时间多,但是如果长期超50%的使用,那么我们就该考虑优化程序算法或者进行加速。
sy: 系统进程执行时间(system time)
sy的值高时,说明系统内核消耗的CPU资源多,这并不是良性表现,我们应该检查原因。
id: 空闲时间(包括IO等待时间),中央处理器的空闲时间 。以百分比表示。
wa: 等待IO时间
wa的值高时,说明IO等待比较严重,这可能由于磁盘大量作随机访问造成,也有可能磁盘出现瓶颈(块操作)。
备注: 如果 r经常大于 4 ,且id经常少于40,表示cpu的负荷很重。如果pi,po 长期不等于0,表示内存不足。如果disk 经常不等于0, 且在 b中的队列 大于3, 表示 io性能不好。Linux在具有高稳定性、可靠性的同时,具有很好的可伸缩性和扩展性,能够针对不同的应用和硬件环境调整,优化出满足当前应用需要的最佳性能。因此企业在维护Linux系统、进行系统调优时,了解系统性能分析工具是至关重要的。
命令:
vmstat 5 5
表示在5秒时间内进行5次采样。将得到一个数据汇总他能够反映真正的系统情况。
实例二:显示活跃和非活跃内存
命令:
vmstat -a 2 5
输出:
[root@localhost ~]
#
vmstat -a 2 5
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
r b swpd free inact active si so bi bo
in cs us sy id wa st
0 0 0 3029752 387728 513008 0 0 0 2 3 2 0 0 100 0 0
0 0 0 3029752 387728 513076 0 0 0 0 1005 34 0 0 100 0 0
0 0 0 3029752 387728 513076 0 0 0 22 1004 36 0 0 100 0 0
0 0 0 3029752 387728 513076 0 0 0 0 1004 33 0 0 100 0 0
0 0 0 3029752 387728 513076 0 0 0 0 1003 32 0 0 100 0 0
[root@localhost ~]#
说明:
使用-a选项显示活跃和非活跃内存时,所显示的内容除增加inact和active外,其他显示内容与例子1相同。
字段说明:
Memory(内存):
inact: 非活跃内存大小(当使用-a选项时显示)
active: 活跃的内存大小(当使用-a选项时显示)
实例三:查看系统已经fork了多少次
命令:
vmstat -f
输出:
[root@SCF1129 ~]# vmstat -f
12744849 forks
[root@SCF1129 ~]#
说明:
这个数据是从/proc/stat中的processes字段里取得的
实例四:查看内存使用的详细信息
命令:
vmstat -s
输出:
[root@localhost ~]
#
vmstat -s
4043760 total memory
1013884 used memory
513012 active memory
387728 inactive memory
3029876 free memory
199616 buffer memory
690980 swap cache
6096656 total swap
0 used swap
6096656 free swap
83587 non-nice user cpu ticks
132 nice user cpu ticks
278599 system cpu ticks
913344692 idle cpu ticks
814550 IO-wait cpu ticks
10547 IRQ cpu ticks
21261 softirq cpu ticks
0 stolen cpu ticks
310215 pages paged
in
14254652 pages paged out
0 pages swapped
in
0 pages swapped out
288374745 interrupts
146680577 CPU context switches
1351868832 boot time
367291 forks
说明:
这些信息的分别来自于/proc/meminfo,/proc/stat和/proc/vmstat。
实例五:查看磁盘的读/写
命令:
vmstat -d
输出:
[root@localhost ~]
#
vmstat -d
disk- ------------reads------------ ------------writes----------- -----IO------
total merged sectors ms total merged sectors ms cur sec
ram0 0 0 0 0 0 0 0 0 0 0
ram1 0 0 0 0 0 0 0 0 0 0
ram2 0 0 0 0 0 0 0 0 0 0
ram3 0 0 0 0 0 0 0 0 0 0
ram4 0 0 0 0 0 0 0 0 0 0
ram5 0 0 0 0 0 0 0 0 0 0
ram6 0 0 0 0 0 0 0 0 0 0
ram7 0 0 0 0 0 0 0 0 0 0
ram8 0 0 0 0 0 0 0 0 0 0
ram9 0 0 0 0 0 0 0 0 0 0
ram10 0 0 0 0 0 0 0 0 0 0
ram11 0 0 0 0 0 0 0 0 0 0
ram12 0 0 0 0 0 0 0 0 0 0
ram13 0 0 0 0 0 0 0 0 0 0
ram14 0 0 0 0 0 0 0 0 0 0
ram15 0 0 0 0 0 0 0 0 0 0
sda 33381 6455 615407 63224 2068111 1495416 28508288 15990289 0 10491
hdc 0 0 0 0 0 0 0 0 0 0
fd0 0 0 0 0 0 0 0 0 0 0
md0 0 0 0 0 0 0 0 0 0 0
[root@localhost ~]
#
说明:
这些信息主要来自于/proc/diskstats.
merged:表示一次来自于合并的写/读请求,一般系统会把多个连接/邻近的读/写请求合并到一起来操作.
实例六:查看/dev/sda1磁盘的读/写
命令:
输出:
[root@SCF1129 ~]# df
文件系统 1K-块 已用 可用 已用% 挂载点
/dev/sda3 1119336548 27642068 1034835500 3% /tmpfs 32978376 0 32978376 0% /dev/shm
/dev/sda1 1032088 59604 920056 7% /boot
[root@SCF1129 ~]# vmstat -p /dev/sda1
sda1 reads read sectors writes requested writes
18607 4249978 6 48[root@SCF1129 ~]# vmstat -p /dev/sda3
sda3 reads read sectors writes requested writes
429350 35176268 28998789 980301488[root@SCF1129 ~]#
说明:
这些信息主要来自于/proc/diskstats。
reads:来自于这个分区的读的次数。
read sectors:来自于这个分区的读扇区的次数。
writes:来自于这个分区的写的次数。
requested writes:来自于这个分区的写请求次数。
实例七:查看系统的slab信息
命令:
vmstat -m
输出:
[root@localhost ~]
#
vmstat -m
Cache Num Total Size Pages
ip_conntrack_expect 0 0 136 28
ip_conntrack 3 13 304 13
ip_fib_alias 11 59 64 59
ip_fib_hash 11 59 64 59
AF_VMCI 0 0 960 4
bio_map_info 100 105 1064 7
dm_mpath 0 0 1064 7
jbd_4k 0 0 4096 1
dm_uevent 0 0 2608 3
dm_tio 0 0 24 144
dm_io 0 0 48 77
scsi_cmd_cache 10 10 384 10
sgpool-128 32 32 4096 1
sgpool-64 32 32 2048 2
sgpool-32 32 32 1024 4
sgpool-16 32 32 512 8
sgpool-8 45 45 256 15
scsi_io_context 0 0 112 34
ext3_inode_cache 51080 51105 760 5
ext3_xattr 36 88 88 44
journal_handle 18 144 24 144
journal_head 56 80 96 40
revoke_table 4 202 16 202
revoke_record 0 0 32 112
uhci_urb_priv 0 0 56 67
UNIX 13 33 704 11
flow_cache 0 0 128 30
msi_cache 33 59 64 59
cfq_ioc_pool 14 90 128 30
cfq_pool 12 90 216 18
crq_pool 16 96 80 48
deadline_drq 0 0 80 48
as_arq 0 0 96 40
mqueue_inode_cache 1 4 896 4
isofs_inode_cache 0 0 608 6
hugetlbfs_inode_cache 1 7 576 7
Cache Num Total Size Pages
ext2_inode_cache 0 0 720 5
ext2_xattr 0 0 88 44
dnotify_cache 0 0 40 92
dquot 0 0 256 15
eventpoll_pwq 3 53 72 53
eventpoll_epi 3 20 192 20
inotify_event_cache 0 0 40 92
inotify_watch_cache 1 53 72 53
kioctx 0 0 320 12
kiocb 0 0 256 15
fasync_cache 0 0 24 144
shmem_inode_cache 254 290 768 5
posix_timers_cache 0 0 128 30
uid_cache 0 0 128 30
ip_mrt_cache 0 0 128 30
tcp_bind_bucket 3 112 32 112
inet_peer_cache 0 0 128 30
secpath_cache 0 0 64 59
xfrm_dst_cache 0 0 384 10
ip_dst_cache 5 10 384 10
arp_cache 1 15 256 15
RAW 3 5 768 5
UDP 5 10 768 5
tw_sock_TCP 0 0 192 20
request_sock_TCP 0 0 128 30
TCP 4 5 1600 5
blkdev_ioc 14 118 64 59
blkdev_queue 20 30 1576 5
blkdev_requests 13 42 272 14
biovec-256 7 7 4096 1
biovec-128 7 8 2048 2
biovec-64 7 8 1024 4
biovec-16 7 15 256 15
biovec-4 7 59 64 59
biovec-1 23 202 16 202
bio 270 270 128 30
utrace_engine_cache 0 0 64 59
Cache Num Total Size Pages
utrace_cache 0 0 64 59
sock_inode_cache 33 48 640 6
skbuff_fclone_cache 7 7 512 7
skbuff_head_cache 319 390 256 15
file_lock_cache 1 22 176 22
Acpi-Operand 4136 4248 64 59
Acpi-ParseExt 0 0 64 59
Acpi-Parse 0 0 40 92
Acpi-State 0 0 80 48
Acpi-Namespace 2871 2912 32 112
delayacct_cache 81 295 64 59
taskstats_cache 4 53 72 53
proc_inode_cache 1427 1440 592 6
sigqueue 0 0 160 24
radix_tree_node 13166 13188 536 7
bdev_cache 23 24 832 4
sysfs_dir_cache 5370 5412 88 44
mnt_cache 26 30 256 15
inode_cache 2009 2009 560 7
dentry_cache 60952 61020 216 18
filp 479 1305 256 15
names_cache 3 3 4096 1
avc_node 14 53 72 53
selinux_inode_security 994 1200 80 48
key_jar 2 20 192 20
idr_layer_cache 74 77 528 7
buffer_head 164045 164800 96 40
mm_struct 51 56 896 4
vm_area_struct 1142 1958 176 22
fs_cache 35 177 64 59
files_cache 36 55 768 5
signal_cache 72 162 832 9
sighand_cache 68 84 2112 3
task_struct 76 80 1888 2
anon_vma 458 864 24 144
pid 83 295 64 59
shared_policy_node 0 0 48 77
Cache Num Total Size Pages
numa_policy 37 144 24 144
size-131072(DMA) 0 0 131072 1
size-131072 0 0 131072 1
size-65536(DMA) 0 0 65536 1
size-65536 1 1 65536 1
size-32768(DMA) 0 0 32768 1
size-32768 2 2 32768 1
size-16384(DMA) 0 0 16384 1
size-16384 5 5 16384 1
size-8192(DMA) 0 0 8192 1
size-8192 7 7 8192 1
size-4096(DMA) 0 0 4096 1
size-4096 110 111 4096 1
size-2048(DMA) 0 0 2048 2
size-2048 602 602 2048 2
size-1024(DMA) 0 0 1024 4
size-1024 344 352 1024 4
size-512(DMA) 0 0 512 8
size-512 433 480 512 8
size-256(DMA) 0 0 256 15
size-256 1139 1155 256 15
size-128(DMA) 0 0 128 30
size-64(DMA) 0 0 64 59
size-64 5639 5782 64 59
size-32(DMA) 0 0 32 112
size-128 801 930 128 30
size-32 3005 3024 32 112
kmem_cache 137 137 2688 1
这组信息来自于/proc/slabinfo。
slab:由于内核会有许多小对象,这些对象构造销毁十分频繁,比如i-node,dentry,这些对象如果每次构建的时候就向内存要一个页(4kb),而其实只有几个字节,这样就会非常浪费,为了解决这个问题,就引入了一种新的机制来处理在同一个页框中如何分配小存储区,而slab可以对小对象进行分配,这样就不用为每一个对象分配页框,从而节省了空间,内核对一些小对象创建析构很频繁,slab对这些小对象进行缓冲,可以重复利用,减少内存分配次数。