二叉树

数据结构与算法分析——c语言描述 第四章树 二叉树


tree.h

typedef int ElementType;

#ifndef _Tree_H
#define _Tree_H

struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;

void makeEmpty(SearchTree t);
Position find(ElementType X, SearchTree t);
Position findMin(SearchTree t);
Position findMax(SearchTree t);
SearchTree insert(ElementType X, SearchTree t);
SearchTree Delete(ElementType X, SearchTree t);
ElementType Retrieve(Position p);

#endif


tree.c

#include"tree.h"
#include"fatal.h"

struct TreeNode {
	ElementType element;
	SearchTree left;
	SearchTree right;
};

void makeEmpty(SearchTree t) {
	if (t) {
		makeEmpty(t->left);
		makeEmpty(t->right);
		free(t);
	}
}

Position find(ElementType X, SearchTree t) {
	if (t == NULL)
		return NULL;//NOT FOUND
	else {
		if (X < t->element)
			return find(X, t->left);
		else if (X>t->element)
			return find(X, t->right);
		else
			return t;
	}
}

Position findMin(SearchTree t) {
	while (t->left)
		t = t->left;
	return t;
}

Position findMax(SearchTree t)
{
	while (t->right)
		t = t->right;
	return t;
}

SearchTree insert(ElementType X, SearchTree t) {
	if (t == NULL) {//包含树没有初始化
		t = malloc(sizeof(struct TreeNode));
		if (t == NULL)
			Error("out of memory");
		t->element = X;
		t->left = NULL;
		t->right = NULL;
	}
	else {
		if (X < t->element)
			t->left = insert(X, t->left);
		else if (X>t->element)
			t->right = insert(X, t->right);
	}
	return t;//两种情况
}

SearchTree Delete(ElementType X, SearchTree t) {
	Position tempCell;
	if (t == NULL)
	{
		Error("Element not found");
	}
	else if (X < t->element)
		t->left = Delete(X, t->left);
	else if (X > t->element)
		t->right = Delete(X, t->right);
	else if (t->left && t->right)
	{
		tempCell = findMin(t->right);
		t->element = tempCell->element;
		t->right = Delete(t->element, t->right);
	}
	else
	{
		tempCell = t;
		if (t->left == NULL)
			t = t->right;
		else if (t->right == NULL)
			t = t->left;
		free(tempCell);
	}
	return t;
}

ElementType Retrieve(Position p) {
	return p->element;
}


你可能感兴趣的:(二叉树)