Matrix Multiplication (& Quick Power)
Description
g(x) = k * x + b。
f(x) 为Fibonacci数列。
求f(g(x)),从x = 1到n的数字之和,并对m取模。
Type
Matrix Multiplication
Quick Power
Analysis
我们知道f(x)中,两个元素之间的关系是
因为g(x) – b,为一个等比数列,所以,他们之间也有一个类似Fibonacci的关系,并且可以用矩阵来表示
而为了求和,我们可以添加一项s(x),用来表示前x项的和,最后得到矩阵
( s(x-1),f(g(x)),f(g(x)-1) ) = ( s(x – 2), f(g(x – 1), f(g(x – 1) – 1)) ) ×
剩下的工作就是矩阵乘法和快速幂了。
Solution
// HDOJ 1588 // Gauss Fibonacci // by A Code Rabbit #include <cstdio> #include <cstring> const int MAXO = 5; template <typename T> struct Matrix { T e[MAXO][MAXO]; int o; Matrix(int order) { memset(e, 0, sizeof(e)); o = order; } Matrix operator*(const Matrix& one) { Matrix res(o); for (int i = 0; i < o; i++) for (int j = 0; j < o; j++) for (int k = 0; k < o; k++) res.e[i][j] += e[i][k] * one.e[k][j]; return res; } Matrix operator%(int mod) { for (int i = 0; i < o; i++) for (int j = 0; j < o; j++) e[i][j] %= mod; return *this; } }; template <typename T> T QuickPower(T radix, int exp, int mod) { T res = radix; exp--; while (exp) { if (exp & 1) res = res * radix % mod; exp >>= 1; radix = radix * radix % mod; } return res; } int k, b, n, m; int Fibonacci(int x); int main() { while (scanf("%d%d%d%d", &k, &b, &n, &m) != EOF) { // Initialize in the first time. Matrix<long long> mat_one1(2); mat_one1.e[0][0] = 1; mat_one1.e[0][1] = 1; mat_one1.e[1][0] = 1; // Quick power for computing the matrix of the relation of two nest // pair of numbers in g(x). Matrix<long long> mat_ans1 = QuickPower(mat_one1, k, m); // Initialize in the second time. Matrix<long long> mat_one2(3); mat_one2.e[0][0] = 1; mat_one2.e[1][0] = 1; for (int i = 1; i < 3; ++i) for (int j = 1; j < 3; ++j) mat_one2.e[i][j] = mat_ans1.e[i - 1][j - 1]; // Quick power for computing the sum of g(x). Matrix<long long> mat_ans2 = QuickPower(mat_one2, n - 1, m); // Output. int original_solution[] = { Fibonacci(b), Fibonacci(k + b), Fibonacci(k + b - 1), }; long long sum = 0; for (int i = 0; i < 3; i++) sum += original_solution[i] * mat_ans2.e[i][0]; printf("%lld\n", sum % m); } return 0; } int Fibonacci(int x) { if (!x) return 0; Matrix<long long> mat_one(2); // Initialize mat_one. mat_one.e[0][0] = 1; mat_one.e[0][1] = 1; mat_one.e[1][0] = 1; // Quick power. Matrix<long long> mat_ans = QuickPower(mat_one, x, m); // Compete and return the result. return mat_ans.e[1][0]; }