HDOJ 1588 - Gauss Fibonacci

Matrix Multiplication (& Quick Power) 


Description

g(x) = k * x + b。

f(x) 为Fibonacci数列。

求f(g(x)),从x = 1到n的数字之和,并对m取模。


Type

Matrix Multiplication

Quick Power


Analysis

我们知道f(x)中,两个元素之间的关系是

       

因为g(x) – b,为一个等比数列,所以,他们之间也有一个类似Fibonacci的关系,并且可以用矩阵来表示

而为了求和,我们可以添加一项s(x),用来表示前x项的和,最后得到矩阵

( s(x-1),f(g(x)),f(g(x)-1) ) = ( s(x – 2), f(g(x – 1), f(g(x – 1) – 1)) ) ×

 HDOJ 1588 - Gauss Fibonacci_第1张图片

剩下的工作就是矩阵乘法和快速幂了。


Solution

// HDOJ 1588
// Gauss Fibonacci
// by A Code Rabbit

#include <cstdio>
#include <cstring>

const int MAXO = 5;

template <typename T>
struct Matrix {
    T e[MAXO][MAXO];
    int o;
    Matrix(int order) { memset(e, 0, sizeof(e)); o = order; }
    Matrix operator*(const Matrix& one) {
        Matrix res(o);
        for (int i = 0; i < o; i++)
            for (int j = 0; j < o; j++)
                for (int k = 0; k < o; k++)
                    res.e[i][j] += e[i][k] * one.e[k][j];
        return res;
    }
    Matrix operator%(int mod) {
        for (int i = 0; i < o; i++)
            for (int j = 0; j < o; j++)
                e[i][j] %= mod;
        return *this;
    }
};

template <typename T>
T QuickPower(T radix, int exp, int mod) {
    T res = radix;
    exp--;
    while (exp) {
        if (exp & 1) res = res * radix % mod;
        exp >>= 1;
        radix = radix * radix % mod;
    }
    return res;
}

int k, b, n, m;

int Fibonacci(int x);

int main() {
    while (scanf("%d%d%d%d", &k, &b, &n, &m) != EOF) {
        // Initialize in the first time.
        Matrix<long long> mat_one1(2);
        mat_one1.e[0][0] = 1;
        mat_one1.e[0][1] = 1;
        mat_one1.e[1][0] = 1;
        // Quick power for computing the matrix of the relation of two nest
        // pair of numbers in g(x).
        Matrix<long long> mat_ans1 = QuickPower(mat_one1, k, m);
        // Initialize in the second time.
        Matrix<long long> mat_one2(3);
        mat_one2.e[0][0] = 1;
        mat_one2.e[1][0] = 1;
        for (int i = 1; i < 3; ++i)
            for (int j = 1; j < 3; ++j)
                mat_one2.e[i][j] = mat_ans1.e[i - 1][j - 1];
        // Quick power for computing the sum of g(x).
        Matrix<long long> mat_ans2 = QuickPower(mat_one2, n - 1, m);
        // Output.
        int original_solution[] = {
            Fibonacci(b),
            Fibonacci(k + b),
            Fibonacci(k + b - 1),
        };
        long long sum = 0;
        for (int i = 0; i < 3; i++)
            sum += original_solution[i] * mat_ans2.e[i][0];
        printf("%lld\n", sum % m);
    }

    return 0;
}

int Fibonacci(int x) {
    if (!x) return 0;
    Matrix<long long> mat_one(2);
    // Initialize mat_one.
    mat_one.e[0][0] = 1;
    mat_one.e[0][1] = 1;
    mat_one.e[1][0] = 1;
    // Quick power.
    Matrix<long long> mat_ans = QuickPower(mat_one, x, m);
    // Compete and return the result.
    return mat_ans.e[1][0];
}

你可能感兴趣的:(HDOJ 1588 - Gauss Fibonacci)