Codeforces Round #172 (Div. 2)---D. Maximum Xor Secondary(RMQ + 二分)

Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x1, x2, …, xk (k > 1) is such maximum element xj, that the following inequality holds: .

The lucky number of the sequence of distinct positive integers x1, x2, …, xk (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence.

You’ve got a sequence of distinct positive integers s1, s2, …, sn (n > 1). Let’s denote sequence sl, sl + 1, …, sr as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r].

Note that as all numbers in sequence s are distinct, all the given definitions make sence.
Input

The first line contains integer n (1 < n ≤ 105). The second line contains n distinct integers s1, s2, …, sn (1 ≤ si ≤ 109).
Output

Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r].
Sample test(s)
Input

5
5 2 1 4 3

Output

7

Input

5
9 8 3 5 7

Output

15

Note

For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2].

For the second sample you must choose s[2..5] = {8, 3, 5, 7}.

先rmq预处理好最大值,然后枚举每一个数作为次大值的情况,二分往左往右分别找到第一个大于它的数,然后取一个最大值就行

/************************************************************************* > File Name: CF-172-D.cpp > Author: ALex > Mail: [email protected] > Created Time: 2015年04月03日 星期五 13时48分52秒 ************************************************************************/

#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>

using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

const int N = 100100;
LL dp[N][20];
int LOG[N];
LL arr[N];

void initLOG()
{
    LOG[0] = -1;
    for (int i = 1; i <= 100000; ++i)
    {
        LOG[i] = LOG[i - 1];
        LOG[i] += !(i & (i - 1));
    }
}

void initRMQ(int n)
{
    for (int i = 1; i <= n; ++i)
    {
        dp[i][0] = arr[i];
    }
    for (int j = 1; j <= LOG[n]; ++j)
    {
        for (int i = 1; i + (1 << j) - 1 <= n; ++i)
        {
            dp[i][j] = max(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
        }
    }
}

LL ST(int l, int r)
{
    int k = LOG[r - l + 1];
    return max(dp[l][k], dp[r - (1 << k) + 1][k]);
}

int main()
{
    int n;
    while (~scanf("%d", &n))
    {
        LL ans = 0;
        for (int i = 1; i <= n; ++i)
        {
            scanf("%I64d", &arr[i]);
        }
        initLOG();
        initRMQ(n);
        for (int i = 1; i <= n; ++i)
        {
            int l = i + 1, r = n, mid;
            LL tmp = arr[i];
            while (l <= r)
            {
                mid = (l + r) >> 1;
                LL maxs = ST(i + 1, mid);
                if (maxs >= arr[i])
                {
                    tmp = maxs;
                    r = mid - 1;
                }
                else
                {
                    l = mid + 1;
                }
            }
            ans = max(ans, tmp ^ arr[i]);
            l = 1;
            r = i - 1;
            tmp = arr[i];
            while (l <= r)
            {
                mid = (l + r) >> 1;
                LL maxs = ST(mid, i - 1);
                if (maxs > arr[i])
                {
                    tmp = maxs;
                    l = mid + 1;
                }
                else
                {
                    r = mid - 1;
                }
            }
            ans = max(ans, tmp ^ arr[i]);
        }
        printf("%I64d\n", ans);
    }
    return 0;
}

你可能感兴趣的:(RMQ,二分)