POJ1151 (HDU 1542) Atlantis【矩形面积并,线段树+离散化+扫描线模板】

Description

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.

Input

The input consists of several test cases. Each test case starts with a line containing a single integer n (1 <= n <= 100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0 <= x1 < x2 <= 100000;0 <= y1 < y2 <= 100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.
The input file is terminated by a line containing a single 0. Don't process it.

Output

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.
Output a blank line after each test case.

Sample Input

2
10 10 20 20
15 15 25 25.5
0

Sample Output

Test case #1
Total explored area: 180.00 

这个模板摘自kuangbin 讲解摘自:点击打开链接==

扫描线法:假想有一条扫描线,从左往右(从右往左),或者从下往上(从上往下)扫描过整个多边形(或者说畸形。。多个矩形叠加后的那个图形)。如果是竖直方向上扫描,则是离散化横坐标,如果是水平方向上扫描,则是离散化纵坐标。下面的分析都是离散化横坐标的,并且从下往上扫描的

   扫描之前还需要做一个工作,就是保存好所有矩形的上下边,并且按照它们所处的高度进行排序,另外如果是上边我们给他一个值-1,下边给他一个值1,我们用一个结构体来保存所有的上下边 

struct segment
{
double l,r,h;   //l,r表示这条上下边的左右坐标,h是这条边所处的高度
int f;   //所赋的值,1或-1
}

接着扫描线从下往上扫描,每遇到一条上下边就停下来,将这条线段投影到总区间上(总区间就是整个多边形横跨的长度),这个投影对应的其实是个插入和删除线段操作。还记得给他们赋的值1或-1吗,下边是1,扫描到下边的话相当于往总区间插入一条线段,上边-1,扫描到上边相当于在总区间删除一条线段(如果说插入删除比较抽象,那么就直白说,扫描到下边,投影到总区间,对应的那一段的值都要增1,扫描到上边对应的那一段的值都要减1,如果总区间某一段的值为0,说明其实没有线段覆盖到它,为正数则有,那会不会为负数呢?是不可能的,可以自己思考一下)。

每扫描到一条上下边后并投影到总区间后,就判断总区间现在被覆盖的总长度,然后用下一条边的高度减去当前这条边的高度,乘上总区间被覆盖的长度,就能得到一块面积,并依此做下去,就能得到最后的面积

下面的模板貌似是从左到右扫描的==要不然记录上下端点干嘛==

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 201
struct Node
{
    int l,r;//线段树的左右整点
    int c;//c用来记录重叠情况
    double cnt,lf,rf;//
    //cnt用来计算实在的长度,rf,lf分别是对应的左右真实的浮点数端点 
}segTree[MAXN*3];     
struct Line
{
    double x,y1,y2;
    int f;
}line[MAXN];
//把一段段平行于y轴的线段表示成数组 ,
//x是线段的x坐标,y1,y2线段对应的下端点和上端点的坐标 
//一个矩形 ,左边的那条边f为1,右边的为-1,
//用来记录重叠情况,可以根据这个来计算,nod节点中的c 

bool cmp(Line a,Line b)//sort排序的函数
{
    return a.x < b.x;
}     

double y[MAXN];//记录y坐标的数组
void Build(int t,int l,int r)//构造线段树
{
    segTree[t].l=l;segTree[t].r=r;
    segTree[t].cnt=segTree[t].c=0;
    segTree[t].lf=y[l];
    segTree[t].rf=y[r];
    if(l+1==r)  return;
    int mid=(l+r)>>1;
    Build(t<<1,l,mid);
    Build(t<<1|1,mid,r);//递归构造 
}     
void calen(int t)//计算长度
{
    if(segTree[t].c>0)
    {
        segTree[t].cnt=segTree[t].rf-segTree[t].lf;
        return;
    }    
    if(segTree[t].l+1==segTree[t].r)  segTree[t].cnt=0;
    else  segTree[t].cnt=segTree[t<<1].cnt+segTree[t<<1|1].cnt;
}     
void update(int t,Line e)//加入线段e,后更新线段树
{
    if(e.y1==segTree[t].lf&&e.y2==segTree[t].rf)
    {
        segTree[t].c+=e.f;
        calen(t);
        return;
    }    
    if(e.y2<=segTree[t<<1].rf)  update(t<<1,e);
    else if(e.y1>=segTree[t<<1|1].lf)  update(t<<1|1,e);
    else
    {
        Line tmp=e;
        tmp.y2=segTree[t<<1].rf;
        update(t<<1,tmp);
        tmp=e;
        tmp.y1=segTree[t<<1|1].lf;
        update(t<<1|1,tmp);
    }    
    calen(t);
}    
int main()
{
    int i,n,t,iCase=0;
    double x1,y1,x2,y2;
    while(scanf("%d",&n),n)
    {
        iCase++;
        t=1;
        for(i=1;i<=n;i++)
        {
            scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
            line[t].x=x1;
            line[t].y1=y1;
            line[t].y2=y2;
            line[t].f=1;
            y[t]=y1;
            t++;
            line[t].x=x2;
            line[t].y1=y1;
            line[t].y2=y2;
            line[t].f=-1;
            y[t]=y2;
            t++;
        } 
        sort(line+1,line+t,cmp);
        sort(y+1,y+t);   
        Build(1,1,t-1);
        update(1,line[1]);
        double res=0;
        for(i=2;i<t;i++)
        {
            res+=segTree[1].cnt*(line[i].x-line[i-1].x);
            update(1,line[i]);
        }    
        printf("Test case #%d\nTotal explored area: %.2f\n\n",iCase,res);
        //看来POJ上%.2f可以过,%.2lf却不行了 
    }    
    return 0;
}     


你可能感兴趣的:(POJ1151 (HDU 1542) Atlantis【矩形面积并,线段树+离散化+扫描线模板】)