[HDU 3435]A new Graph Game[拆点][KM]

题目链接:[HDU 3435]A new Graph Game[拆点][KM]
题意分析:
图中所有的哈密顿环中,边权之和最小的那个环和是多少?
解题思路:
考虑最终的环对于每个点来说,都有一条出边和入边,将点拆开成一个入点、一个出点,那么这个问题就成为了求二分图中最小完美匹配了(一个出点对应一个入点)。边权值取相反值,进行最大完美匹配即可。
个人感受:
原来我的板子是求最大完美匹配= =我竟然没有意识到,样例各种姿势过= =还是理解不够啊
具体代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

const int INF = 0x7f7f7f7f;
const int MAXN = 1e3 + 11;

int n;
int lx[MAXN], ly[MAXN], w[MAXN][MAXN], slack[MAXN], match[MAXN];
bool visx[MAXN], visy[MAXN];

bool dfs(int x)
{
    visx[x] = 1;
    for (int y = 1; y <= n; ++y)
    {
        if (visy[y] || w[x][y] == -INF) continue;
        int temp = lx[x] + ly[y] - w[x][y];
        if (temp == 0)
        {
            visy[y] = 1;
            if (match[y] == -1 || dfs(match[y]))
            {
                match[y] = x;
                return 1;
            }
        }
        else if (slack[y] > temp) slack[y] = temp;
    }
    return 0;
}

int KM()
{
    int i, j;
    memset(match, -1, sizeof(int) * (n + 2));
    memset(ly, 0, sizeof(int) * (n + 2));
    for (i = 1; i <= n; ++i)
    {
        for (j = 1, lx[i] = -INF; j <= n; ++j)
            if (w[i][j] > lx[i]) lx[i] = w[i][j];
    }

    for (int x = 1; x <= n; ++x)
    {
        for (i = 1; i <= n; ++i) slack[i] = INF;
        while (1)
        {
            memset(visx, 0, sizeof(bool)*(n + 2));
            memset(visy, 0, sizeof(bool)*(n + 2));
            if (dfs(x)) break;

            int d = INF;
            for (i = 1; i <= n; ++i) if (!visy[i] && slack[i] < d)
                d = slack[i];

            if (d == INF) return -1; // 无法松弛,返回-1

            for (i = 1; i <= n; ++i)
            {
                if (visx[i]) lx[i] -= d;
                if (visy[i]) ly[i] += d;
                else slack[i] -= d;
            }
        }
    }

    int ret = 0;
    for (i = 1; i <= n; ++i)
    {
        //cout << match[i] << ' ' << i << endl;
        if (match[i] != -1) ret += w[match[i]][i];
        else return -1;
    }
    return -ret;
}

int main()
{
    int a, b, c, t, m;
    for (int kase = scanf("%d", &t); kase <= t; ++kase)
    {
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; ++i)
            for (int j = 1; j <= n; ++j)
                w[i][j] = -INF;

        for (int i = 0; i < m; ++i)
        {
            scanf("%d%d%d", &a, &b, &c);
            if (a == b) continue;
            w[a][b] = w[b][a] = max(w[a][b], -c); // 建立反向边
        }
        int ans = KM();
        printf("Case %d: ", kase);
        if (ans == -1) printf("NO\n");
        else printf("%d\n", ans);
    }
    return 0;
}

你可能感兴趣的:(km,拆点)