Everything is great about Ilya’s city, except the roads. The thing is, the only ZooVille road is represented as n holes in a row. We will consider the holes numbered from 1 to n, from left to right.
Ilya is really keep on helping his city. So, he wants to fix at least k holes (perharps he can fix more) on a single ZooVille road.
The city has m building companies, the i-th company needs ci money units to fix a road segment containing holes with numbers of at least li and at most ri. The companies in ZooVille are very greedy, so, if they fix a segment containing some already fixed holes, they do not decrease the price for fixing the segment.
Determine the minimum money Ilya will need to fix at least k holes.
Input
The first line contains three integers n, m, k (1 ≤ n ≤ 300, 1 ≤ m ≤ 105, 1 ≤ k ≤ n). The next m lines contain the companies’ description. The i-th line contains three integers li, ri, ci (1 ≤ li ≤ ri ≤ n, 1 ≤ ci ≤ 109).
Output
Print a single integer — the minimum money Ilya needs to fix at least k holes.
If it is impossible to fix at least k holes, print -1.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Sample test(s)
Input
10 4 6
7 9 11
6 9 13
7 7 7
3 5 6
Output
17
Input
10 7 1
3 4 15
8 9 8
5 6 8
9 10 6
1 4 2
1 4 10
8 10 13
Output
2
Input
10 1 9
5 10 14
Output
-1
dp[i][j] 表示前i个点,埋了j个的最小代价
C[i][j]表示从i到j雇佣一家公司埋好花的最少的钱
/************************************************************************* > File Name: CF-186-D.cpp > Author: ALex > Mail: [email protected] > Created Time: 2015年04月02日 星期四 16时39分36秒 ************************************************************************/
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>
using namespace std;
const double pi = acos(-1.0);
const double eps = 1e-15;
typedef long long LL;
const LL inf = (1LL << 60);
typedef pair <int, int> PLL;
const int N = 330;
LL C[N][N];
LL dp[N][N];
int main()
{
int n, m, k;
while (~scanf("%d%d%d", &n, &m, &k))
{
int l, r;
LL c;
for (int i = 0; i <= n + 1; ++i)
{
for (int j = 0; j <= n + 1; ++j)
{
dp[i][j] = inf;
C[i][j] = inf;
}
}
for (int i = 0; i <= n; ++i)
{
dp[i][0] = 0;
}
for (int i = 1; i <= m; ++i)
{
scanf("%d%d%lld", &l, &r, &c);
C[l][r] = min(C[l][r], c);
}
for (int i = 1; i <= n; ++i)
{
for (int j = n; j >= i; --j)
{
C[i][j] = min(C[i][j], C[i - 1][j]);
C[i][j] = min(C[i][j], C[i][j + 1]);
}
}
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j <= i; ++j)
{
dp[i][j] = dp[i - 1][j];
for (int p = 0; p < i; ++p)
{
if (C[p + 1][i] == inf)
{
continue;
}
dp[i][j] = min(dp[i][j], dp[p][j - i + p] + C[p + 1][i]);
}
}
}
LL ans = inf;
for (int i = 1; i <= n; ++i)
{
for (int j = k; j <= i; ++j)
{
ans = min(ans, dp[i][j]);
}
}
if (ans >= inf)
{
ans = -1;
}
printf("%lld\n", ans);
}
return 0;
}