Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
[思路]二叉搜索树的性质,左子树比根小,右子树比根大,判断p和q的大小,是递归调用左子树还是右子树,处于中间,则为根节点。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root==NULL || p==NULL || q==NULL) return NULL; if(min(p->val ,q->val) > root->val) return lowestCommonAncestor(root->right, p,q); else if(max(p->val ,q->val) < root->val) return lowestCommonAncestor(root->left, p,q); else return root; } };