题意:话说一个猪圈管理员,他本身没有猪圈的钥匙。每天会有许多顾客来买猪,这些顾客自己带着某些猪圈的钥匙。每当一个顾客来买猪,这些打开的猪圈里的猪可以随意流动,买完猪之后打开的猪圈全部关闭。现在已知每个猪圈里猪的的数量,每一名顾客拥有的钥匙以及他想购买的猪的数量。求管理员可以卖出的最大数量。
题解:构图是难点在于猪的流动。我是这样想的,假设顾客A可以打开了猪圈1,3,5,他需要购买numA头猪,由于每次被打开的猪圈之间的猪可以自由分配,那么猪圈1,3,5就可以视作一个集合X,当顾客A买完猪之后,集合X剩下的值为X-numA;如果下一次有一位顾客B可以打开猪圈2,4,5,他需要买numB头猪,将2,4,5其视作集合Y。由于X,Y之间有一个公共点5,那么集合Y的最大数量等于Y+X-numA。这样就比较清晰了。所有到达顾客A的流分作两部分,一部分流向汇点(numA)。另一部分流向顾客B(X-numA)。所以从A至B有一条边。
#include <iostream> using namespace std; #define MAX 2000 #define INF 999999999 #define min(a,b) (a<b?a:b) struct Edge { int st, ed; int next; int flow; } edge[MAX*10]; bool key[101][1001]; // key[i][j] == true 表示第i名顾客拥有猪圈j的钥匙 int head[MAX], out[MAX]; int que[MAX], stk[MAX]; int leve[MAX], house[MAX]; int E, M, N, src, dest; void add_edge ( int u, int v, int val ) { edge[E].st = u; edge[E].ed = v; edge[E].flow = val; edge[E].next = head[u]; head[u] = E++; edge[E].st = v; edge[E].ed = u; edge[E].flow = 0; edge[E].next = head[v]; head[v] = E++; } bool dinic_bfs () { int front, rear, u, v, i; memset(leve,-1,sizeof(leve)); front = rear = 0; que[rear++] = src; leve[src] = 0; while ( front != ( rear + 1 ) % MAX ) { u = que[front]; front = ( front + 1 ) % MAX; for ( i = head[u]; i != -1; i = edge[i].next ) { v = edge[i].ed; if ( leve[v] == -1 && edge[i].flow > 0 ) { leve[v] = leve[u] + 1; que[rear] = v; rear = ( rear + 1 ) % MAX; } } } return leve[dest] >= 0; } int Dinic () { int top, u, i; int maxFlow = 0, minf; while ( dinic_bfs () ) { top = 0; u = src; for ( i = src; i <= dest; i++ ) out[i] = head[i]; while ( out[src] != -1 ) { if ( u == dest ) { minf = INF; for ( i = top - 1; i >= 0; i-- ) minf = min ( edge[stk[i]].flow, minf ); maxFlow += minf; for ( i = top - 1; i >= 0; i-- ) { edge[stk[i]].flow -= minf; edge[stk[i]^1].flow += minf; if ( edge[stk[i]].flow == 0 ) top = i; } u = edge[stk[top]].st; } else if ( out[u] != -1 && leve[u] + 1 == leve[edge[out[u]].ed] && edge[out[u]].flow > 0 ) { stk[top++] = out[u]; u = edge[out[u]].ed; } else { while ( top > 0 && u != src && out[u] == -1 ) u = edge[stk[--top]].st; out[u] = edge[out[u]].next; } } } return maxFlow; } int main() { scanf("%d%d",&M,&N); src = E = 0; dest = M + N + 1; memset(key,0,sizeof(key)); memset(head,-1,sizeof(head)); int i, j, k, A, B; for ( i = 1; i <= M; i++ ) { scanf("%d",&house[i]); add_edge ( src, i, house[i] ); } for ( i = 1; i <= N; i++ ) { scanf("%d",&A); for ( j = 1; j <= A; j++ ) { scanf("%d",&k); key[i][k] = true; add_edge ( k, i+M, house[k] ); } for ( j = 1; j < i; j++ ) //枚举第i名顾客之前的顾客 { for ( k = 1; k <= M; k++ ) if ( key[j][k] && key[i][k] ) //若j,i有相同的钥匙,则可以连接一条从j到i的边,容量为无穷 add_edge ( j+M, i+M, INF ); } scanf("%d",&B); add_edge ( i+M, dest, B ); } printf("%d\n",Dinic()); return 0; }