poj 2955 区间dp

http://poj.org/problem?id=2955

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, imwhere 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

 经典的区间DP模型--最大括号匹配数。如果找到一对匹配的括号[xxx]oooo,就把区间分成两部分,一部分是xxx,一部分是ooo,然后以此递归直到区间长度为1或者为2.

     状态转移方程:dp[i][j] = min(dp[i+1][j],dp[i+1][k-1]+dp[k+1][j]+1)(i<=k<=j&&i和k是一对括号)

方法一:记忆化搜索写法

#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
char a[105];
int dp[105][105];
int solve(int x,int y)
{
    if(x>=y)
        return 0;
    if(dp[x][y])
        return dp[x][y];
    dp[x][y]=solve(x+1,y);
    for(int i=x+1;i<=y;i++)
    {
        if((a[x]=='('&&a[i]==')')||(a[x]=='['&&a[i]==']'))
            dp[x][y]=max(dp[x][y],solve(x+1,i-1)+2+solve(i+1,y));
    }
    return dp[x][y];
}
int main()
{
    while(~scanf("%s",a+1))
    {
        if(strcmp(a+1,"end")==0)
            break;
        memset(dp,0,sizeof(dp));
        int n=strlen(a+1);
        printf("%d\n",solve(1,n));
    }
    return 0;
}


方法二:直接DP

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
char a[105];
int dp[105][105];
int main()
{
    while(~scanf("%s",a+1))
    {
        if(strcmp(a+1,"end")==0)
              break;
        memset(dp,0,sizeof(dp));
        int n=strlen(a+1);
       /* for(int i=1;i<=n;i++)
             cout <<a[i];
        cout <<"**"<<endl;*/
        for(int i=n-1; i>=0; i--)
            for(int j=i+1; j<=n; j++)
            {
                dp[i][j]=dp[i+1][j];
                for(int k=i+1; k<=j; k++)
                    if((a[i]=='('&&a[k]==')')||(a[i]=='['&&a[k]==']'))
                        dp[i][j]=max(dp[i][j],dp[i+1][k-1]+dp[k+1][j]+2);
            }
        /*for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
                printf("%d ",dp[i][j]);
            printf("\n");
        }*/
        printf("%d\n",dp[1][n]);
    }
    return 0;
}


你可能感兴趣的:(poj 2955 区间dp)