- python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理
西猫雷婶
人工智能机器学习python学习笔记机器学习python人工智能深度学习scikit-learn
【1】引言前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客此次继续深入,研究多文本的综合处理。【2】代码测试首先相对于单文本测试,直接将文本改成多行文本:#引入必要的模块fromsklearn.feature_extraction.te
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- Sklearn 机器学习 数值离散化 区间标签
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化之区间标签设置详解在机器学习中,连续数值型特征并不总是最优选择,尤其是在面对一些对数值大小不敏感的模型(如决策树、朴素贝叶斯)时。此时,我们常常希望将连续变量离散化(Discret
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- python学智能算法(十三)|机器学习朴素贝叶斯方法进阶-简单二元分类
西猫雷婶
人工智能机器学习python学习笔记机器学习python分类人工智能开发语言矩阵深度学习
引言前述学习进程中,已经学习了拉普拉斯平滑公式计算条件概率的简单应用,文章链接为:python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率在此基础上,今天更进一步,联系一个简单二元分类的项目。项目介绍简单二元分类,就是把数据分成两种样本,完成区分即可。参数定义开展项目之前,先来定义几个参数:先验概率P(y):P(y)=∑j=1j=nyj∑yP(y)=\frac{\sum
- python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率
西猫雷婶
人工智能概率论机器学习机器学习人工智能深度学习矩阵python开发语言
【1】引言前序学习进程中,对条件概率进行了简单探索:https://blog.csdn.net/weixin_44855046/article/details/145388138?spm=1001.2014.3001.5501今天,以此为基础,探索机器学习中朴素贝叶斯方法的基本程序。【2】代码解读【2.1】库引入这里只需要numpy库:#引入numpy模块importnumpyasnp【2.2】初
- python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试
西猫雷婶
python学习笔记机器学习人工智能机器学习python人工智能
【1】引用前序学习文章中,已经对拉普拉斯平滑和简单二元分类进行了初步探索,相关文章链接为:python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率-CSDN博客python学智能算法(十三)|机器学习朴素贝叶斯方法进阶-简单二元分类-CSDN博客在实践应用中也会发现,朴素贝叶斯方法还能对文本进行分类,今天的学习目标就是学习简单的文本操作技巧,需要使用sklearn里面的
- 【数据挖掘】期末复习模拟题(暨考试题)
chaser&upper
数据分析随笔小记数据挖掘python聚类
数据挖掘-期末复习试题挑战全网最全题库单选题多选题判断题填空题程序填空sigmoid曼哈顿距离泰坦尼克号披萨价格预测鸢尾花DBSCN密度聚类决策树购物表单-关联规则火龙果-关联分析数据非线性映射高斯朴素贝叶斯分类器手写数字识别k1-10聚类平均偏差程序分析PM2.5线性回归Titanic数据清洗KNN鸢尾花Kmeans聚类KNN电影分类频繁k项集混淆矩阵OverlookMOOC总结挑战全网最全题库
- 机器学习算法——朴素贝叶斯和特征降维
TY-2025
机器学习机器学习算法人工智能
一、常见概率计算朴素贝叶斯算法是利用概率值进行分类的一种机器学习算法概率:一种事情发生的可能性,取值在[0,1]之间条件概率:表示事件A在另外一个事件B已经发生的条件下的发生概率P(A∣B)P(A|B)P(A∣B)联合概率:表示多个条件同时成立的概率P(AB)=P(A)∗P(B∣A)=P(B)∗P(A∣B)P(AB)=P(A)*P(B|A)=P(B)*P(A|B)P(AB)=P(A)∗P(B∣A)
- 机器学习基础 - 分类模型之朴素贝叶斯
yousuotu
杂项机器学习分类人工智能
朴素贝叶斯文章目录朴素贝叶斯1.基本概念1.条件概率2.先验概率3.后验概率2.贝叶斯公式3.条件独立假设4.从机器学习视角理解朴素贝叶斯朴素贝叶斯中的三种模型1.多项式模型2.高斯模型3.伯努利模型QA1.朴素贝叶斯为何朴素?2.朴素贝叶斯分类中某个类别的概率为0怎么办?3.朴素贝叶斯的要求是什么?4.朴素贝叶斯的优缺点?5.朴素贝叶斯与LR区别?1.基本概念1.条件概率P(X∣Y)=P(X,Y
- BERT分类器和朴素贝叶斯分类器比较
非小号
AIbert人工智能深度学习
一、核心原理对比维度预训练模型(如BERT)朴素贝叶斯分类器模型类型深度学习模型,基于Transformer架构,通过大规模无监督预训练学习语言表示。传统机器学习模型,基于贝叶斯定理和特征条件独立假设。特征表示自动学习文本的上下文相关表示(contextualembeddings),捕捉长距离语义依赖。通常使用词袋模型(BagofWords)或TF-IDF,忽略词序和上下文,仅考虑词频。训练方式两
- Spark与朴素贝叶斯在股票市场预测中的应用及代码实战
飞翔的袋鼠弟
本文还有配套的精品资源,点击获取简介:本项目展示了如何利用Spark框架结合朴素贝叶斯算法进行股票市场的预测。项目涵盖了从原始股票数据的处理到模型训练的全过程,包括数据预处理、特征工程、模型训练和测试。所使用的数据文件包括原始股票数据、不同阶段的数据转换结果、数据平均值计算结果和测试数据集。同时提供了Java和Python实现的代码文件,包括数据处理、模型训练和评估。朴素贝叶斯算法在股票预测中通过
- 连续变量的全概率和贝叶斯公式_朴素贝叶斯分类:原理
小红帽的灰灰狼
连续变量的全概率和贝叶斯公式
贝叶斯原理是英国数学家托马斯·贝叶斯提出的。贝叶斯是个很神奇的人,他的经历类似梵高。生前没有得到重视,死后,他写的一篇关于归纳推理的论文被朋友翻了出来,并发表了。这一发表不要紧,结果这篇论文的思想直接影响了接下来两个多世纪的统计学,是科学史上著名的论文之一。贝叶斯原理贝叶斯为了解决一个叫“逆向概率”问题写了一篇文章,**尝试解答在没有太多可靠证据的情况下,怎样做出更符合数学逻辑的推测。**什么是“
- matlab实现朴素贝叶斯可视化,模式识别(七):MATLAB 实现朴素贝叶斯分类器
哈哈哈哈哈哈哈哈鸽
本系列文章由云端暮雪编辑,转载请注明出处多谢合作!基础介绍今天介绍一种简单高效的分类器——朴素贝叶斯分类器(NaiveBayesClassifier)。相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”:贝叶斯分类器就是基于这条公式发展起来的,之所以这里还加上了朴素二字,是因为该分类器对各类的分布做了一个假设,即不同类的数
- 基于ThinkPHP-Laravel的智能养猫商城系统:融合AI与创新算法的未来宠物电商解决方案——用技术重新定义宠物生活体验
qq_42682397
laravel人工智能算法
导语:当养猫经济遇上全栈开发与AI算法在宠物经济蓬勃发展的2025年,我们推出了一款基于ThinkPHP-Laravel全栈开发的智能养猫用品商城系统。系统不仅实现了电商核心功能,更创新性融合车牌识别、K-means聚类算法、朴素贝叶斯算法等AI能力,为宠物主提供智能化购物体验,为商家打造数据驱动的精准运营体系。项目源码已开源,助力开发者快速构建高扩展性宠物垂直电商平台!系统核心亮点:AI赋能,重
- 使用贝叶斯算法完成垃圾邮件分类实战
万能小贤哥
算法分类人工智能
一、背景与问题分析垃圾邮件长期以来困扰用户,传统方法如关键词匹配和校验码验证存在明显缺陷:误判率高:正常邮件可能包含"发票"、"中奖"等关键词。易被规避:垃圾邮件发送者会替换关键词或插入干扰字符。贝叶斯分类方法通过计算词汇在垃圾邮件中的联合概率实现更精准分类,其优势在于:动态适应新词汇和表达方式数据量越大分类效果越好天然支持概率化评估二、算法核心原理朴素贝叶斯公式:P(Spam∣Words)=P(
- 建立多项式朴素贝叶斯模型实战指南
万能小贤哥
机器学习人工智能算法
一、模型选择与实现针对文本分类任务(如垃圾邮件识别),多项式朴素贝叶斯(MultinomialNB)是最优选择:适用场景:处理离散型特征(如词频、TF-IDF值)核心优势:直接利用整数型词频特征,无需假设数据分布对比区别:高斯朴素贝叶斯:假设特征符合正态分布,适合连续型数据伯努利朴素贝叶斯:处理二值化特征(是否存在某个词)python复制下载fromsklearn.naive_bayesimpor
- 机器学习算法——朴素贝叶斯算法
阿K还阔以
机器学习算法人工智能
一、朴素贝叶斯算法介绍1、朴素贝叶斯算法概述朴素贝叶斯算法是一种经典的概率分类算法,它基于贝叶斯定理和特征独立性假设。该算法常被用于文本分类、垃圾邮件过滤、情感分析等领域。朴素贝叶斯算法的核心思想是通过已知类别的训练样本集,学习出每个类别的概率分布模型,然后根据待分类样本的特征,利用贝叶斯定理计算出样本属于各个类别的后验概率,最终选择具有最大后验概率的类别作为分类结果。在朴素贝叶斯算法中,特征之间
- Python从0到100(五十九):机器学习-朴素贝叶斯分类及鸢尾花分类
是Dream呀
分类数据挖掘人工智能
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 实战9:机器学习之:朴素贝叶斯方法对鸢尾花卉品种预测实战教程
计算机毕设论文
机器学习实战100例算法数据挖掘决策树
1.理论部分朴素贝叶斯是一种基于贝叶斯定理的有监督分类算法。该算法一个重要的特点:假设特征条件独立,正是这个假设使得朴素贝叶斯法的学习和预测变得简单。在特征条件独立的假设下,朴素贝叶斯法先利用训练数据集的先验统计信息计算特征向量与标签的联合概率分布,然后对于新输入的样本点,利用联合概率分布计算后验概率,并用后验概率最大的输出标签确定为新样本点的类别。注意:假设特征条件独立正是朴素贝叶斯中“朴素”两
- 鸢尾花python贝叶斯分类_机器学习-利用三种分类器实现鸢尾花分类
weixin_39755853
鸢尾花python贝叶斯分类
利用决策树,KNN和朴素贝叶斯三种分类器,对鸢尾花数据集进行分类。下面是具体的流程和代码:1、数据读取:实验数据是直接加载的sklearn内置的鸢尾花数据集,共150条数据,包含4个特征,而且是一个三分类问题。fromsklearnimportdatasets#导入方法类iris=datasets.load_iris()#加载iris数据集iris_feature=iris.data#加载特征数据
- 基于机器学习的舆情分析算法研究
赵谨言
论文经验分享毕业设计
标题:基于机器学习的舆情分析算法研究内容:1.摘要随着互联网的飞速发展,舆情信息呈现爆炸式增长,如何快速准确地分析舆情成为重要课题。本文旨在研究基于机器学习的舆情分析算法,以提高舆情分析的效率和准确性。方法上,收集了近10万条社交媒体的舆情文本数据,利用多种机器学习算法如支持向量机、朴素贝叶斯、决策树等进行训练和优化。结果表明,经过优化的支持向量机算法在舆情分类的准确率上达到了85%以上,明显高于
- 朴素贝叶斯和半朴素贝叶斯(AODE)分类器Python实现
McQueen_LT
机器学习机器学习python人工智能数据分析数据挖掘
一、概述机器学习最后一次实验,要求实现朴素贝叶斯和AODE的半朴素贝叶斯分类器。由于老师说可以调用现成的相关机器学习的库,所以我一开始在做朴素贝叶斯分类器的时候,直接调用了sklearn库,很方便,可是问题来了,在做AODE半朴素贝叶斯分类器的时候,并没有找到集成好的方法。所以就想着自己把半朴素贝叶斯分类器实现了,朴素贝叶斯分类就直接调用库算了。可是让人头大的是,上来就直接实现AODE分类器还是不
- Level3 — PART 4 机器学习算法 — 朴素贝叶斯
ErbaoLiu
数据分析&大模型自然语言处理&大模型机器学习&大模型机器学习人工智能朴素贝叶斯NaiveBayes
目录贝叶斯定理朴素贝叶斯模型(NaiveBayesModel)估计离散估计极大似然估计案例朴素贝叶斯扩展高斯贝叶斯分类器原理应用源码分析伯努利贝叶斯分类器原理源码分析多项朴素贝叶斯分类器半朴素贝叶斯分类器模拟题CDALEVELIII模拟题(一)CDALEVELIII模拟题(二)贝叶斯定理贝叶斯定理由英国数学家贝叶斯(ThomasBayes1702-1761)发展,用来描述两个条件概率之间的关系,比
- 机器学习常用算法整理
上天夭
面试
文章目录机器学习常用算法整理一、监督学习1.1、决策树(DecisionTrees)1.1.1、ID31.1.2、C4.51.1.3、CART1.2、朴素贝叶斯分类(NaiveBayesianclassification)1.3、线性回归(LinearRegression)1.4、逻辑回归(LogisticRegression)1.5、支持向量机(SupportVectorMachine,SVM)
- 机器学习(6)——朴素贝叶斯
追逐☞
机器学习机器学习人工智能概率论
文章目录1.什么是朴素贝叶斯算法?2.核心思想3.数学基础3.算法步骤3.1.计算先验概率3.2.计算条件概率4.常见变种5.优缺点6.零概率问题与平滑技术7.应用场景8.Python示例9.参数调优10.总结1.什么是朴素贝叶斯算法?朴素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,在机器学习和数据挖掘中广泛应用。它被称为“朴素”的原因是它假设特征之间是条件独立的,这简化
- 基于文本的情感分析
李昊哲小课
大数据数据分析人工智能python数据分析机器学习自然语言处理
基于文本的情感分析代码逻辑顺序说明数据加载与特征转换:首先加载积极和消极评论数据,并将其转换为特征集。这是情感分析的基础步骤,为后续的模型训练提供数据支持。数据集划分:将特征集划分为训练集和测试集。通常使用80%的数据作为训练集,20%的数据作为测试集,以评估模型的性能。模型训练:使用训练集训练朴素贝叶斯分类器。朴素贝叶斯是一种简单而有效的分类算法,适用于文本分类任务。模型测试:使用测试集评估分类
- 【机器学习】每日一讲-朴素贝叶斯公式
问道飞鱼
机器学习与人工智能机器学习人工智能朴素贝叶斯公式
文章目录**一、朴素贝叶斯公式详解****1.贝叶斯定理基础****2.从贝叶斯定理到分类任务****3.特征独立性假设****4.条件概率的估计****二、在AI领域的作用****1.文本分类与自然语言处理(NLP)****2.推荐系统****3.医疗与生物信息学****4.实时监控与异常检测****5.多模态数据处理****三、推导过程示例(以文本分类为例)****四、代码实现(Python)
- MATLAB基础应用精讲-【数模应用】贝叶斯优化
林聪木
机器学习算法人工智能
目录前言算法原理朴素贝叶斯算法核心思想示例贝叶斯定理贝叶斯网络贝叶斯网络的结构形式因子图数学模型最优贝叶斯推理贝叶斯优化什么高斯过程acquisition函数朴素贝叶斯贝叶斯公式与条件独立假设1)先验概率与后验概率2)贝叶斯公式3)条件独立假设与朴素贝叶斯平滑处理1)为什么需要平滑处理2)拉普拉斯平滑及依据应用案例中文分词统计机器翻译贝叶斯图像识别,AnalysisbySynthesisEM算法与
- 预测分析(三):基于机器学习的分类预测
^ω^宇博
数学建模数学模型机器学习分类人工智能
文章目录基于机器学习的分类预测分类任务逻辑回归分类树分类树的工作原理随机森林多元分类朴素贝叶斯分类器贝叶斯公式回到分类问题**1.算法原理****2.主要类型****(1)高斯朴素贝叶斯****(2)多项式朴素贝叶斯****(3)伯努利朴素贝叶斯****3.优缺点****4.应用场景****5.评估指标****6.示例代码(Python)**基于机器学习的分类预测分类任务分类问题主要是分为三种类型
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&