给定一个入栈序列,求所有可能的出栈序列

转自出处


网上有很多解法,但个人感觉不够清晰。下面本人献丑来写下自己的解法。力求简明易懂。首先这是个卡特兰数,学过组合数学的同学都知道。没学过的可以看下下面这个例子。

有2n个人排成一队进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票可找零,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)。

对于这个例子,剧院要想总有零钱可找,那么目前进入剧院的人数中,揣着10元钞票的人数必须少于等于揣着5元钞票的,不然肯定在某个人那出现没零钱找的情况。

现在回到正题上来对于一个给定入栈序列,怎么求它的出栈序列呢?

我们可以把入栈记为1,出栈记为0.那么前缀子序列中1的个数必须大于等于0的个数,即入栈次数要大于等于出栈次数,如1 1 0 1 0 0,它的任意前缀序列中1的个数是大于等于0的个数的。

我们来看个例子:对于1 2 3这个入栈序列,1 1 0 1 0 0就是一个入栈出栈序列,第一个1代表元素1入栈,然后第二个1代表元素2入栈,然后第三个是0,代表出栈,即元素2出栈,然后第四个是1,代表元素3入栈,然后第五个是0,代表出栈,即元素3出栈,然后第六个是0,代表元素1出栈。最后1 1 0 1 0 0就代表了出栈序列2 3 1。

那么现在的问题就转换为如何求出所有符合条件的0 1序列了。其实这和以下问题相同:给定括号对数,输出所有符合要求的序列。如2对括号,输出有()()或者(())两种。1可以看成'(',0可以看成‘)’。

下面贴上本人的程序,并给出详细注释。

#include <iostream>
#include <vector>
using namespace std;


void func(vector<char>kind,int count[],int n)
{
    if(count[0]>=1)
    {
        kind.push_back('(');
        count[0]--;
        func(kind,count,n);
        count[0]++;
        kind.pop_back();
    }
    if((count[1]>=1) && (count[1]>count[0]))
    {
        kind.push_back(')');
        count[1]--;
        func(kind,count,n);
        count[1]++;
        kind.pop_back();
    }
    if(kind.size()==2*n)
    {
        vector<char>::iterator iter;
        for(iter=kind.begin();iter!=kind.end();iter++)
        {
            cout<<(*iter)<<" ";
        }
        cout<<endl;
    }
}


int main()
{
    int n;
    cout << "please input the number of ():" << endl;
    cin>>n;
    int count[2]={n-1,n};
    vector<char>kind;
    kind.push_back('(');
    func(kind,count,n);
    return 0;
}

count[0]存着左括号数目,count[1]存着右括号数目。一开始kind中压入左括号,因为第一个肯定是左括号。然后count数组初始化为n-1个左括号,n个右括号。然后我们递归的处理。如果剩余左括号数count[0]大于0,就可以把左括号压栈。而对于右括号,栈中左括号个数必须多于右括号个数,也就是剩余右括号个数大于左括号个数,即count[1]>count[0]时,才能将右括号压栈。如果栈中元素个数达到2n时,就把栈中元素输出。

下面贴出出栈序列代码,几乎和上面相同。

#include <iostream>
#include <stack>
#include <vector>
using namespace std;


int number=0;
void func(vector<int>kind,int count[],int n,int A[])
{
    if(count[0]>=1)
    {
        kind.push_back(1);
        count[0]--;
        func(kind,count,n,A);
        count[0]++;
        kind.pop_back();
    }
    if((count[1]>=1) && (count[1]>count[0]))
    {
        kind.push_back(0);
        count[1]--;
        func(kind,count,n,A);
        count[1]++;
        kind.pop_back();
    }
    if(kind.size()==2*n)
    {
        vector<int>::iterator iter;
        stack<int>stk;
        int j=0;
        for(iter=kind.begin();iter!=kind.end();iter++)
        {
            //cout<<(*iter)<<" ";
            if(1==(*iter))
            {
                stk.push(A[j]);
                j++;
            }
            else
            {
                cout<<stk.top()<<" ";
                stk.pop();
            }
        }
        number++;
        cout<<endl;
    }
}


int main()
{
    int n,i;
    cout << "please input the number:" << endl;
    cin>>n;
    int A[n];
    cout << "please input the push sequence:" << endl;
    for(i=0;i<n;i++)
    {
        cin>>A[i];
    }
    int count[2]={n-1,n};
    vector<int>kind;
    kind.push_back(1);

    cout<<"the result is:"<<endl;
    func(kind,count,n,A);
    cout<<"total:"<<number<<endl;
    return 0;
}



你可能感兴趣的:(给定一个入栈序列,求所有可能的出栈序列)