剑指offer-面试题25:二叉树中和为某一值的路径

题目:输入一棵二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径。从树的根结点开始往下一直到叶结点所经过的形成一条路径。

思路:对于每棵子树,它都是一个求解树中结点值的和为输入整数的所有路径的问题,整数为去除它的父节点的和之后新的值,所以很明显可以用递归的方法求解。那么对于每个结点,怎样判断是否已经是要求的路径呢?题目要求和为整数且是叶结点。作者给出的思路简单粗暴,那就是遍历,不管加上当前结点值的和大于小于还是等于整数,一律访问到叶结点为止,这样似乎省去了很多判断,缺点就是做了一些不必要的求和运算。如果当前路径不是要找的路径,则需要回溯到父结点,寻找另一条路径。后加入路径的结点先退出,这是一个栈结构。

代码直接摘自《剑指offer》,有几点是我以前没有接触过的,学习一下:

(1)用bool型变量替换表达式。表达式太长,用bool型变量可以让代码看起来更简洁。

(2)用vector实现栈。如果用栈保存路径的结点,由于栈每次只能取栈顶,打印出来的路径是逆序的,作者用vector解决了这个问题,push_back()相当于入栈,pop_back()(好吧,以前还不知道C++的STL里有这个函数)模拟出栈。

void FindPath(BinaryTreeNode* pRoot, int expectedSum)
{
    if(pRoot == NULL)
        return;

    std::vector<int> path;
    int currentSum = 0;
    FindPath(pRoot, expectedSum, path, currentSum);
}

void FindPath
(
    BinaryTreeNode*   pRoot,        
    int               expectedSum,  
    std::vector<int>& path,         
    int&              currentSum
)
{
    currentSum += pRoot->m_nValue;
    path.push_back(pRoot->m_nValue);

    // 如果是叶结点,并且路径上结点的和等于输入的值
    // 打印出这条路径
    bool isLeaf = pRoot->m_pLeft == NULL && pRoot->m_pRight == NULL;
    if(currentSum == expectedSum && isLeaf)
    {
        printf("A path is found: ");
        std::vector<int>::iterator iter = path.begin();
        for(; iter != path.end(); ++ iter)
            printf("%d\t", *iter);
        
        printf("\n");
    }

    // 如果不是叶结点,则遍历它的子结点
    if(pRoot->m_pLeft != NULL)
        FindPath(pRoot->m_pLeft, expectedSum, path, currentSum);
    if(pRoot->m_pRight != NULL)
        FindPath(pRoot->m_pRight, expectedSum, path, currentSum);

    // 在返回到父结点之前,在路径上删除当前结点,
    // 并在currentSum中减去当前结点的值
    currentSum -= pRoot->m_nValue;
    path.pop_back();
} 



你可能感兴趣的:(剑指offer-面试题25:二叉树中和为某一值的路径)