A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题目比较简单,主要学习了下C++二维动态数组的创建.
class Solution {
public:
int uniquePaths(int m, int n) {
double **a;
a = new double*[m];
for(int j=0;j<m;j++)
{
a[j] = new double[n];
}
for(int i=0; i<m;i++)
for(int j=0;j<n;j++)
a[i][j]=1;
for(int i=1; i<m;i++)
for(int j=1;j<n;j++)
a[i][j]=a[i-1][j]+a[i][j-1];
return a[m-1][n-1];
for (int i=0;i<m;i++)
{
delete[] a[i]; //先撤销指针元素所指向的数组
}
delete[] a;
}
};
JAVA代码。
public class Solution {
public int uniquePaths(int m, int n) {
int [][] a=new int[m][n];
for(int i=0; i<m;i++)
for(int j=0;j<n;j++)
a[i][j]=1;
for(int i=1; i<m;i++)
for(int j=1;j<n;j++)
a[i][j]=a[i-1][j]+a[i][j-1];
return a[m-1][n-1];
}
}