标题:AVL树的基本操作例程(1)

摘要(1)AVL树是带有平衡条件的二叉平衡树。它要求左子树和右子树的高度之差不能超过1;
(2)当插入一个新的节点后,可能会造成新的不平衡;因此要通过一定的操作来修正;我们将它称为旋转;
(3)不同的不平衡情况对应不同的旋转:对于一个平衡的节点有四种情况:对它的左儿子的左子树,左儿子右子树,右儿子左子树,右儿子的右子树;这对应了四种旋转;
(4)单旋转(左单旋,右单旋),双旋转(左双旋,右双旋);
如图所示:
标题:AVL树的基本操作例程(1)_第1张图片

标题:AVL树的基本操作例程(1)_第2张图片

标题:AVL树的基本操作例程(1)_第3张图片
代码:对双旋转提供了两种思路:调用两次但旋转/直接实现;

Position SingleRotateLeft(Position T)
{
    static int amount = 0;
    Position k1,k2;
    k1 = T;
    k2 = T->Left;
    k1->Left = k2->Right;
    k2->Right = k1;
    amount ++ ;
    printf("the times of splayingL is:%d\n",amount);
    return k2;
}
Position SingleRotateRight(Position T)
{
    static int  amount = 0;
    Position k1,k2;
    k1 = T;
    k2 = T->Right;
    k1->Right = k2->Left;
    k2->Left = k1;
    amount ++;
    printf("the times of splayingR is:%d\n",amount);
    return k2;
}
Position DoubleRotateLeft(Position k3)
{
    k3->Left = SingleRotateRight(k3->Left);
    k3 = SingleRotateLeft(k3);
    return k3;
}
Position DoubleRotateRight(Position k3)
{
    k3->Right = SingleRotateLeft(k3->Right);
    k3 = SingleRotateRight(k3);
    return k3;
}
Position RotateOneRight(Position k1)
{
    static int amount4 = 0;
    Position k2 = k1->Right;
    Position k3 = k2->Right;
    k1->Right = k2->Left;
    k2->Left = k1;
    k2->Right = k3->Left;
    k3->Left = k2;
    amount4++;
    printf("the times of splaying3 is:%d\n",amount4);
    return k3;
}
Position RotateOneLeft(Position k1)
{
    static int amount3 = 0;
    Position k2 = k1->Left;
    Position k3 = k2->Left;
    k1->Left = k2->Right;
    k2->Right = k1;
    k2->Left = k3->Right;
    k3->Right = k2;
    amount3++;
    printf("the times of splaying3 is:%d\n",amount3);
    return k3;
}

你可能感兴趣的:(标题:AVL树的基本操作例程(1))