利用等概率Rand5产生等概率Rand3

问题本身很明确,但不知道起个什么题目好,姑且先这么说吧。

问题描述:现在有一个叫做Rand5的函数,可以生成等概率的[0, 5)范围内的随机整数,要求利用此函数写一个Rand3函数(除此之外,不能再使用任何能产生随机数的函数或数据源),生成等概率的[0, 3)范围内的随机整数。

我第一次遇到这个问题的时候,着实犯了一回傻,自以为是地证明了这个题目是无解的。其实从概率的角度来看,题目的要求就是,利用一个1/5的概率源,通过某种方式产生出1/3的概率输出。我们都知道,概率运算法则有加法和乘法,而在我的记忆中,算法是“在有限步骤内求解某一问题所使用的一组定义明确的规则”,算法的一个重要特征就是有穷性,即一个算法必须保证执行有限步之后结束。那么有限多个1/5通过加法和乘法是不可能的到1/3这个数值的,因为加法和乘法都不会给分母带来新的因子,那么分母中的3根本就不可能出现。

然而我忽略了这样一个式子:

i=0(25)i=1125=53

基于这个想法,我们来看看这个算法是什么样子的:

Python:

   
   
   
   
1
2
3
4
5
def Rand3 ( ):
  x  = - 1
   while not  0  <= x  <  3:
    x  = Rand5 ( )
   return x

C++:

   
   
   
   
1
2
3
4
5
6
7
8
9
int Rand3 ( )
{
     int x ;
     do
     {
        x  = Rand5 ( ) ;
     }  while  (>=  3 ) ;
     return x ;
}

算法很简单,x是我们最终要输出的数字,只要它不在[0, 3)范围内,就不断地调用Rand5来更新它。直观地看,算法输出的数字只有0、1、2这三个,而且对任何一个都没有偏袒,那么显然每个数字的概率都是1/3,那让我们来严格地计算一下。

以输出0为例,看看概率是多少。x的第一个有效数值是通过Rand5得到的。Rand5返回0的概率是1/5,如果这事儿发生了,我们就得到了0,否则只有当Rand5返回3或4的时候,我们才有机会再次调用它来得到新的数据。第二次调用Rand5之后,又是有1/5的概率得到0,2/5的概率得到3或4导致循环继续执行下去,如此反复。因此概率的计算公式为:

p=====15+25×(15+25×(15+25×()))15×i=0(25)i15×112515×5313

喏,计算表明,Rand3输出0的概率确实是1/3,对于另外两个数字也是一样的。

那么这段代码是不是一个算法呢,它是否满足算法的有穷性呢?我不能确定,虽然它不停机的概率是0,然而这个概率是一个极限值,唉,回去复习极限知识先。

改变一下题目,如果要求利用Rand5编写Rand7怎么办?很简单,用两个Rand5可以拼出Rand25,然后就用前面的方法即可:

Python:

   
   
   
   
1
2
3
4
5
def Rand7 ( ):
  x  = - 1
   while not  0  <= x  <  21:
    x  = Rand5 ( ) *  5 + Rand5 ( )
   return x %  7

C++:

   
   
   
   
1
2
3
4
5
6
7
8
9
int Rand7 ( )
{
     int x ;
     do
     {
        x  = Rand5 ( )  *  5  + Rand5 ( ) ;
     }  while  (>=  21 ) ;
     return x  %  7 ;
}

你可能感兴趣的:(c,算法,python)