- 数据中台(二)数据中台相关技术栈
Yuan_CSDF
#数据中台
1.平台搭建1.1.Amabari+HDP1.2.CM+CDH2.相关的技术栈数据存储:HDFS,HBase,Kudu等数据计算:MapReduce,Spark,Flink交互式查询:Impala,Presto在线实时分析:ClickHouse,Kylin,Doris,Druid,Kudu等资源调度:YARN,Mesos,Kubernetes任务调度:Oozie,Azakaban,AirFlow,
- Hadoop相关面试题
努力的搬砖人.
java面试hadoop
以下是150道Hadoop面试题及其详细回答,涵盖了Hadoop的基础知识、HDFS、MapReduce、YARN、HBase、Hive、Sqoop、Flume、ZooKeeper等多个方面,每道题目都尽量详细且简单易懂:Hadoop基础概念类1.什么是Hadoop?Hadoop是一个由Apache基金会开发的开源分布式计算框架,主要用于处理和存储大规模数据集。它提供了高容错性和高扩展性的分布式存
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- Hadoop 实战笔记(二)-- HDFS 常用 shell 命令总结
dazhong2012
Hadoophdfshadoop
一、HDFS命令显示当前目录结构#显示当前目录结构hadoopfs-ls#递归显示当前目录结构hadoopfs-ls-R#显示根目录下内容hadoopfs-ls/创建目录#创建目录hadoopfs-mkdir#递归创建目录hadoopfs-mkdir-p删除操作#删除文件hadoopfs-rm#递归删除目录和文件hadoopfs-rm-R从本地加载文件到HDFS#二选一执行即可hadoopfs-p
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- Spark集群启动与关闭
陈沐
sparksparkhadoopbigdata
Hadoop集群和Spark的启动与关闭Hadoop集群开启三台虚拟机均启动ZookeeperzkServer.shstartMaster1上面执行启动HDFSstart-dfs.shslave1上面执行开启YARNstart-yarn.shslave2上面执行开启YARN的资源管理器yarn-daemon.shstartresourcemanager(如果nodeManager没有启动(正常情况
- 智慧社区2.0
陈陈爱java
java
项目亮点1.技术架构层面✅多数据源整合(MySQL+Redis+HDFS+OSS)核心亮点:不仅仅是单一数据库,而是根据数据特性使用MySQL(结构化数据)+Redis(缓存)+HDFS(大数据存储)+OSS(对象存储),提高了系统的数据存储效率和查询速度。面试时可以强调:Redis作为缓存,加速社区热点数据访问,减少MySQL压力。HDFS存储海量日志和AI任务数据,支持后续分析。OSS解决图片
- Hadoop MapReduce 词频统计(WordCount)代码解析教程
我不是少爷.
Java基础hadoopmapreduce大数据
一、概述这是一个基于HadoopMapReduce框架实现的经典词频统计程序。程序会统计输入文本中每个单词出现的次数,并将结果输出到HDFS文件系统。二、代码结构packagecom.bigdata.wc;//Hadoop核心类库导入importorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.fs.Path;//数据类型定义
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- hadoop集群关闭命令顺序_启动和关闭Hadoop集群命令步骤
氪老师
hadoop集群关闭命令顺序
启动和关闭Hadoop集群命令步骤总结:1.在master上启动hadoop-daemon.shstartnamenode.2.在slave上启动hadoop-daemon.shstartdatanode.3.用jps指令观察执行结果.4.用hdfsdfsadmin-report观察集群配置情况.5.通过http://npfdev1:50070界面观察集群运行情况.(如果遇到问题看https://
- Flume详解——介绍、部署与使用
克里斯蒂亚诺罗纳尔多阿维罗
flume大数据分布式
1.Flume简介ApacheFlume是一个专门用于高效地收集、聚合、传输大量日志数据的分布式、可靠的系统。它特别擅长将数据从各种数据源(如日志文件、消息队列等)传输到HDFS、HBase、Kafka等大数据存储系统。特点:可扩展:支持大规模数据传输,灵活扩展容错性:支持数据恢复和失败重试,确保数据不丢失多种数据源:支持日志文件、网络数据、HTTP请求、消息队列等多种来源流式处理:数据边收集边传
- 基于MapReduce的气候数据分析
赵谨言
论文毕业设计经验分享
标题:基于MapReduce的气候数据分析内容:1.摘要本文聚焦于基于MapReduce的气候数据分析。背景在于随着全球气候变化问题日益严峻,海量气候数据的高效处理和分析成为关键。目的是利用MapReduce技术对气候数据进行有效挖掘,以揭示气候变化规律和趋势。方法上,采用MapReduce编程模型对大规模气候数据进行分布式处理,通过数据的映射和归约操作实现并行计算。结果表明,运用该技术能显著提高
- hive-进阶版-1
数据牧马人
hivehadoop数据仓库
第6章hive内部表与外部表的区别Hive是一个基于Hadoop的数据仓库工具,用于对大规模数据集进行数据存储、查询和分析。Hive支持内部表(ManagedTable)和外部表(ExternalTable)两种表类型,它们在数据存储、管理方式和生命周期等方面存在显著区别。以下是内部表和外部表的主要区别:1.数据存储位置内部表:数据存储在Hive的默认存储目录下,通常位于HDFS(HadoopDi
- 大数据学习(67)- Flume、Sqoop、Kafka、DataX对比
viperrrrrrr
大数据学习flumekafkasqoopdatax
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦工具主要作用数据流向实时性数据源/目标应用场景Flume实时日志采集与传输从数据源到存储系统实时日志文件、网络流量等→HDFS、HBase、Kafka等日志收集、实时监控、实时分析Sqoop关系型数据库与Hadoop间数据同步关系型数据库→Hadoop生态系统(HDFS、Hive、
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- 上万个Map运行时链接ApplicationMaster超时FAILED
500佰
大数据云计算bigdatamapreduce
#MapReduce业务常见故障#大数据#生产环境真实案例#MapReduce#批计算#离线业务#整理#经验总结说明:此篇总结MapReduce业务常见故障案例处理方案结合自身经历总结不易+关注+收藏欢迎留言更多专题(详见):MapReduce计算引擎详解--项目优化(指导书)上万个Map运行时链接ApplicationMaster超时FAILED症状Mapreduce任务会并发起几万个map,会
- hive 数字转换字符串_Hive架构及Hive SQL的执行流程解读
weixin_39756416
hive数字转换字符串
1、Hive产生背景MapReduce编程的不便性HDFS上的文件缺少Schema(表名,名称,ID等,为数据库对象的集合)2、Hive是什么Hive的使用场景是什么?基于Hadoop做一些数据清洗啊(ETL)、报表啊、数据分析可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。Hive是SQL解析引擎,它将SQL语句转译成M/RJob然后在Hadoop执行。由Facebook开源,
- 在hadoop上运行python_hadoop上运行python程序
廷哥带你小路超车
数据来源:http://www.nber.org/patents/acite75_99.zip首先上传测试数据到hdfs:[root@localhost:/usr/local/hadoop/hadoop-0.19.2]#bin/hadoopfs-ls/user/root/test-inFound5items-rw-r--r--1rootsupergroup1012010-10-2414:39/us
- 大数据学习(60)-HDFS文件结构
viperrrrrrr
学习hdfshadoop
&&大数据学习&&系列专栏:哲学语录:承认自己的无知,乃是开启智慧的大门如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦一、体系结构HDFS是一个标准的主从(Master/Slave)体系结构的分布式系统;HDFS集群包含一个或多个NameNode(NameNodeHA会有多个NameNode)和多个DataNode(根据节点情况规划),用户可以通过HDFS客户端同NameNod
- HBase2.6.1部署文档
CXH728
zookeeperhbase
1、HBase概述ApacheHBase是基于Hadoop分布式文件系统(HDFS)之上的分布式、列存储、NoSQL数据库。它适合处理结构化和半结构化数据,能够存储数十亿行和数百万列的数据,并支持实时读写操作。HBase通常应用于需要快速随机读写、低延迟访问以及高吞吐量的场景,例如大规模日志处理、社交网络数据存储等。HBase特性列存储模型:HBase的数据是按列族存储的,适合高稀疏数据。行键分区
- mySQL和Hive的区别
iijik55
面试学习路线阿里巴巴hivemysql大数据tomcat面试
SQL和HQL的区别整体1、存储位置:Hive在Hadoop上;Mysql将数据存储在设备或本地系统中;2、数据更新:Hive不支持数据的改写和添加,是在加载的时候就已经确定好了;数据库可以CRUD;3、索引:Hive无索引,每次扫描所有数据,底层是MR,并行计算,适用于大数据量;MySQL有索引,适合在线查询数据;4、执行:Hive底层是MapReduce;MySQL底层是执行引擎;5、可扩展性
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- Zookeeper+kafka学习笔记
CHR_YTU
Zookeeper
Zookeeper是Apache的一个java项目,属于Hadoop系统,扮演管理员的角色。配置管理分布式系统都有好多机器,比如我在搭建hadoop的HDFS的时候,需要在一个主机器上(Master节点)配置好HDFS需要的各种配置文件,然后通过scp命令把这些配置文件拷贝到其他节点上,这样各个机器拿到的配置信息是一致的,才能成功运行起来HDFS服务。Zookeeper提供了这样的一种服务:一种集
- 大数据与hdfs创建文件夹
猫猫头有亿点炸
大数据hdfshadoop
注意事项:在hdfs上操作的文件,创建文件的时候注意他与linux是不一样的(模式如下:)hdfsdfs-mkdir/test1错误示例:否则,无论如何hdfsdfs-ls/test1/都没有文件的
- doris:分析 S3/HDFS 上的文件
向阳1218
大数据doris
通过TableValueFunction功能,Doris可以直接将对象存储或HDFS上的文件作为Table进行查询分析。并且支持自动的列类型推断。提示使用方式更多使用方式可参阅TableValueFunction文档:S3:支持S3兼容的对象存储上的文件分析。HDFS:支持HDFS上的文件分析。这里我们通过S3TableValueFunction举例说明如何进行文件分析。自动推断文件列类型>DES
- Hadoop的运行模式
对许
#Hadoophadoop大数据分布式
Hadoop的运行模式1、本地运行模式2、伪分布式运行模式3、完全分布式运行模式4、区别与总结Hadoop有三种可以运行的模式:本地运行模式、伪分布式运行模式和完全分布式运行模式1、本地运行模式本地运行模式无需任何守护进程,单机运行,所有的程序都运行在同一个JVM上执行Hadoop安装后默认为本地模式,数据存储在Linux本地。在本地模式下调试MapReduce程序非常高效方便,一般该模式主要是在
- Hadoop的mapreduce的执行过程
画纸仁
大数据hadoopmapreduce大数据
一、map阶段的执行过程第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划。默认Splitsize=Blocksize(128M),每一个切片由一个MapTask处理。(getSplits)第二阶段:对切片中的数据按照一定的规则读取解析返回对。默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat)第三阶段:调用Mapp
- Hadoop:分布式计算平台初探
dccrtbn6261333
大数据运维java
Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。MapReduceMapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释M
- 探秘开源项目 MapReduce:分布式计算的新篇章
褚知茉Jade
探秘开源项目MapReduce:分布式计算的新篇章去发现同类优质开源项目:https://gitcode.com/在大数据处理领域,一个名字始终熠熠生辉,那就是。这是一个由Google提出的并被广泛应用的编程模型,用于大规模数据集的并行计算。本文将带你深入了解这一开源实现的魅力,分析其技术原理,探讨它的应用场景,并揭示它独特的特性。项目简介该项目是ChubbyJiang对原始GoogleMapRe
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象