本文针对arm linux, 从kernel的第一条指令开始分析,一直分析到进入start_kernel()函数.
我们当前以linux-2.6.19内核版本作为范例来分析,本文中所有的代码,前面都会加上行号以便于和源码进行对照.
例:
在文件init/main.c中:
00478: asmlinkage void __init start_kernel(void)
前面的"00478:" 表示478行,冒号后面的内容就是源码了.
在分析代码的过程中,我们使用缩进来表示各个代码的调用层次.
由于启动部分有一些代码是平台特定的,虽然大部分的平台所实现的功能都比较类似,但是为了更好的对code进行说明,对于平台相关的代码,我们选择at91(ARM926EJS)平台进行分析.
另外,本文是以uncompressed kernel开始讲解的.对于内核解压缩部分的code,在 arch/arm/boot/compressed中,本文不做讨论.
一. 启动条件
通常从系统上电到执行到linux kenel这部分的任务是由boot loader来完成.
关于boot loader的内容,本文就不做过多介绍.
这里只讨论进入到linux kernel的时候的一些限制条件,这一般是boot loader在最后跳转到kernel之前要完成的:
1. CPU必须处于SVC(supervisor)模式,并且IRQ和FIQ中断都是禁止的;
2. MMU(内存管理单元)必须是关闭的, 此时虚拟地址对物理地址;
3. 数据cache(Data cache)必须是关闭的
4. 指令cache(Instruction cache)可以是打开的,也可以是关闭的,这个没有强制要求;
5. CPU 通用寄存器0 (r0)必须是 0;
6. CPU 通用寄存器1 (r1)必须是 ARM Linux machine type (关于machine type, 我们后面会有讲解)
7. CPU 通用寄存器2 (r2) 必须是 kernel parameter list 的物理地址(parameter list 是由boot loader传递给kernel,用来描述设备信息属性的列表,详细内容可参考"Booting ARM Linux"文档).
二. starting kernel
首先,我们先对几个重要的宏进行说明(我们针对有MMU的情况):
宏 位置 默认值 说明
KERNEL_RAM_ADDR arch/arm/kernel/head.S +26 0xc0008000 kernel在RAM中的的虚拟地址
PAGE_OFFSET include/asm-arm/memeory.h +50 0xc0000000 内核空间的起始虚拟地址
TEXT_OFFSET arch/arm/Makefile +137 0x00008000 内核相对于存储空间的偏移
TEXTADDR arch/arm/kernel/head.S +49 0xc0008000 kernel的起始虚拟地址
PHYS_OFFSET include/asm-arm/arch-xxx/memory.h 平台相关 RAM的起始物理地址
内核的入口是stext,这是在arch/arm/kernel/vmlinux.lds.S中定义的:
00011: ENTRY(stext)
对于vmlinux.lds.S,这是ld script文件,此文件的格式和汇编及C程序都不同,本文不对ld script作过多的介绍,只对内核中用到的内容进行讲解,关于ld的详细内容可以参考ld.info
这里的ENTRY(stext) 表示程序的入口是在符号stext.
而符号stext是在arch/arm/kernel/head.S中定义的:
下面我们将arm linux boot的主要代码列出来进行一个概括的介绍,然后,我们会逐个的进行详细的讲解.
在arch/arm/kernel/head.S中 72 - 94 行,是arm linux boot的主代码:
00072: ENTRY(stext)
00073: msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode
00074: @ and irqs disabled
00075: mrc p15, 0, r9, c0, c0 @ get processor id
00076: bl __lookup_processor_type @ r5=procinfo r9=cpuid
00077: movs r10, r5 @ invalid processor (r5=0)?
00078: beq __error_p @ yes, error 'p'
00079: bl __lookup_machine_type @ r5=machinfo
00080: movs r8, r5 @ invalid machine (r5=0)?
00081: beq __error_a @ yes, error 'a'
00082: bl __create_page_tables
00083:
00084:
00091: ldr r13, __switch_data @ address to jump to after
00092: @ mmu has been enabled
00093: adr lr, __enable_mmu @ return (PIC) address
00094: add pc, r10, #PROCINFO_INITFUNC
其中,73行是确保kernel运行在SVC模式下,并且IRQ和FIRQ中断已经关闭,这样做是很谨慎的.
arm linux boot的主线可以概括为以下几个步骤:
1. 确定 processor type (75 - 78行)
2. 确定 machine type (79 - 81行)
3. 创建页表 (82行)
4. 调用平台特定的__cpu_flush函数 (在struct proc_info_list中) (94 行)
5. 开启mmu (93行)
6. 切换数据 (91行)
最终跳转到start_kernel (在__switch_data的结束的时候,调用了 b start_kernel)
下面,我们按照这个主线,逐步的分析Code.
1. 确定 processor type
arch/arm/kernel/head.S中:
00075: mrc p15, 0, r9, c0, c0 @ get processor id
00076: bl __lookup_processor_type @ r5=procinfo r9=cpuid
00077: movs r10, r5 @ invalid processor (r5=0)?
00078: beq __error_p @ yes, error 'p'
75行: 通过cp15协处理器的c0寄存器来获得processor id的指令. 关于cp15的详细内容可参考相关的arm手册
76行: 跳转到__lookup_processor_type.在__lookup_processor_type中,会把processor type 存储在r5中
77,78行: 判断r5中的processor type是否是0,如果是0,说明是无效的processor type,跳转到__error_p(出错)
__lookup_processor_type 函数主要是根据从cpu中获得的processor id和系统中的proc_info进行匹配,将匹配到的proc_info_list的基地址存到r5中, 0表示没有找到对应的processor type.
下面我们分析__lookup_processor_type函数
arch/arm/kernel/head-common.S中:
00145: .type __lookup_processor_type, %function
00146: __lookup_processor_type:
00147: adr r3, 3f
00148: ldmda r3, {r5 - r7}
00149: sub r3, r3, r7 @ get offset between virt&phys
00150: add r5, r5, r3 @ convert virt addresses to
00151: add r6, r6, r3 @ physical address space
00152: 1: ldmia r5, {r3, r4} @ value, mask
00153: and r4, r4, r9 @ mask wanted bits
00154: teq r3, r4
00155: beq 2f
00156: add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list)
00157: cmp r5, r6
00158: blo 1b
00159: mov r5, #0 @ unknown processor
00160: 2: mov pc, lr
00161:
00162:
00165: ENTRY(lookup_processor_type)
00166: stmfd sp!, {r4 - r7, r9, lr}
00167: mov r9, r0
00168: bl __lookup_processor_type
00169: mov r0, r5
00170: ldmfd sp!, {r4 - r7, r9, pc}
00171:
00172:
00176: .long __proc_info_begin
00177: .long __proc_info_end
00178: 3: .long .
00179: .long __arch_info_begin
00180: .long __arch_info_end
145, 146行是函数定义
147行: 取地址指令,这里的3f是向前symbol名称是3的位置,即第178行,将该地址存入r3.
这里需要注意的是,adr指令取址,获得的是基于pc的一个地址,要格外注意,这个地址是3f处的"运行时地址",由于此时MMU还没有打开,也可以理解成物理地址(实地址).(详细内容可参考arm指令手册)
148行: 因为r3中的地址是178行的位置的地址,因而执行完后:
r5存的是176行符号 __proc_info_begin的地址;
r6存的是177行符号 __proc_info_end的地址;
r7存的是3f处的地址.
这里需要注意链接地址和运行时地址的区别. r3存储的是运行时地址(物理地址),而r7中存储的是链接地址(虚拟地址).
__proc_info_begin和__proc_info_end是在arch/arm/kernel/vmlinux.lds.S中:
00031: __proc_info_begin = .;
00032: *(.proc.info.init)
00033: __proc_info_end = .;
这里是声明了两个变量:__proc_info_begin 和 __proc_info_end,其中等号后面的"."是location counter(详细内容请参考ld.info)
这三行的意思是: __proc_info_begin 的位置上,放置所有文件中的 ".proc.info.init" 段的内容,然后紧接着是 __proc_info_end 的位置.
kernel 使用struct proc_info_list来描述processor type.
在 include/asm-arm/procinfo.h 中:
00029: struct proc_info_list {
00030: unsigned int cpu_val;
00031: unsigned int cpu_mask;
00032: unsigned long __cpu_mm_mmu_flags;
00033: unsigned long __cpu_io_mmu_flags;
00034: unsigned long __cpu_flush;
00035: const char *arch_name;
00036: const char *elf_name;
00037: unsigned int elf_hwcap;
00038: const char *cpu_name;
00039: struct processor *proc;
00040: struct cpu_tlb_fns *tlb;
00041: struct cpu_user_fns *user;
00042: struct cpu_cache_fns *cache;
00043: };
我们当前以at91为例,其processor是926的.
在arch/arm/mm/proc-arm926.S 中:
00464: .section ".proc.info.init", #alloc, #execinstr
00465:
00466: .type __arm926_proc_info,#object
00467: __arm926_proc_info:
00468: .long 0x41069260 @ ARM926EJ-S (v5TEJ)
00469: .long 0xff0ffff0
00470: .long PMD_TYPE_SECT | /
00471: PMD_SECT_BUFFERABLE | /
00472: PMD_SECT_CACHEABLE | /
00473: PMD_BIT4 | /
00474: PMD_SECT_AP_WRITE | /
00475: PMD_SECT_AP_READ
00476: .long PMD_TYPE_SECT | /
00477: PMD_BIT4 | /
00478: PMD_SECT_AP_WRITE | /
00479: PMD_SECT_AP_READ
00480: b __arm926_setup
00481: .long cpu_arch_name
00482: .long cpu_elf_name
00483: .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_VFP|HWCAP_EDSP|HWCAP_JAVA
00484: .long cpu_arm926_name
00485: .long arm926_processor_functions
00486: .long v4wbi_tlb_fns
00487: .long v4wb_user_fns
00488: .long arm926_cache_fns
00489: .size __arm926_proc_info, . - __arm926_proc_info
从464行,我们可以看到 __arm926_proc_info 被放到了".proc.info.init"段中.
对照struct proc_info_list,我们可以看到 __cpu_flush的定义是在480行,即__arm926_setup.(我们将在"4. 调用平台特定的__cpu_flush函数"一节中详细分析这部分的内容.)
从以上的内容我们可以看出: r5中的__proc_info_begin是proc_info_list的起始地址, r6中的__proc_info_end是proc_info_list的结束地址.
149行: 从上面的分析我们可以知道r3中存储的是3f处的物理地址,而r7存储的是3f处的虚拟地址,这一行是计算当前程序运行的物理地址和虚拟地址的差值,将其保存到r3中.
150行: 将r5存储的虚拟地址(__proc_info_begin)转换成物理地址
151行: 将r6存储的虚拟地址(__proc_info_end)转换成物理地址
152行: 对照struct proc_info_list,可以得知,这句是将当前proc_info的cpu_val和cpu_mask分别存r3, r4中
153行: r9中存储了processor id(arch/arm/kernel/head.S中的75行),与r4的cpu_mask进行逻辑与操作,得到我们需要的值
154行: 将153行中得到的值与r3中的cpu_val进行比较
155行: 如果相等,说明我们找到了对应的processor type,跳到160行,返回
156行: (如果不相等) , 将r5指向下一个proc_info,
157行: 和r6比较,检查是否到了__proc_info_end.
158行: 如果没有到__proc_info_end,表明还有proc_info配置,返回152行继续查找
159行: 执行到这里,说明所有的proc_info都匹配过了,但是没有找到匹配的,将r5设置成0(unknown processor)
160行: 返回
2. 确定 machine type
arch/arm/kernel/head.S中:
00079: bl __lookup_machine_type @ r5=machinfo
00080: movs r8, r5 @ invalid machine (r5=0)?
00081: beq __error_a @ yes, error 'a'
79行: 跳转到__lookup_machine_type函数,在__lookup_machine_type中,会把struct machine_desc的基地址(machine type)存储在r5中
80,81行: 将r5中的 machine_desc的基地址存储到r8中,并判断r5是否是0,如果是0,说明是无效的machine type,跳转到__error_a(出错)
__lookup_machine_type 函数
下面我们分析__lookup_machine_type 函数:
arch/arm/kernel/head-common.S中:
00176: .long __proc_info_begin
00177: .long __proc_info_end
00178: 3: .long .
00179: .long __arch_info_begin
00180: .long __arch_info_end
00181:
00182:
00193: .type __lookup_machine_type, %function
00194: __lookup_machine_type:
00195: adr r3, 3b
00196: ldmia r3, {r4, r5, r6}
00197: sub r3, r3, r4 @ get offset between virt&phys
00198: add r5, r5, r3 @ convert virt addresses to
00199: add r6, r6, r3 @ physical address space
00200: 1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type
00201: teq r3, r1 @ matches loader number?
00202: beq 2f @ found
00203: add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
00204: cmp r5, r6
00205: blo 1b
00206: mov r5, #0 @ unknown machine
00207: 2: mov pc, lr
193, 194行: 函数声明
195行: 取地址指令,这里的3b是向后symbol名称是3的位置,即第178行,将该地址存入r3.
和上面我们对__lookup_processor_type 函数的分析相同,r3中存放的是3b处物理地址.
196行: r3是3b处的地址,因而执行完后:
r4存的是 3b处的地址
r5存的是__arch_info_begin 的地址
r6存的是__arch_info_end 的地址
__arch_info_begin 和 __arch_info_end是在 arch/arm/kernel/vmlinux.lds.S中:
00034: __arch_info_begin = .;
00035: *(.arch.info.init)
00036: __arch_info_end = .;
这里是声明了两个变量:__arch_info_begin 和 __arch_info_end,其中等号后面的"."是location counter(详细内容请参考ld.info)
这三行的意思是: __arch_info_begin 的位置上,放置所有文件中的 ".arch.info.init" 段的内容,然后紧接着是 __arch_info_end 的位置.
kernel 使用struct machine_desc 来描述 machine type.
在 include/asm-arm/mach/arch.h 中:
00017: struct machine_desc {
00018:
00022: unsigned int nr;
00023: unsigned int phys_io;
00024: unsigned int io_pg_offst;
00026:
00027: const char *name;
00028: unsigned long boot_params;
00029:
00030: unsigned int video_start;
00031: unsigned int video_end;
00032:
00033: unsigned int reserve_lp0 :1;
00034: unsigned int reserve_lp1 :1;
00035: unsigned int reserve_lp2 :1;
00036: unsigned int soft_reboot :1;
00037: void (*fixup)(struct machine_desc *,
00038: struct tag *, char **,
00039: struct meminfo *);
00040: void (*map_io)(void);
00041: void (*init_irq)(void);
00042: struct sys_timer *timer;
00043: void (*init_machine)(void);
00044: };
00045:
00046:
00050: #define MACHINE_START(_type,_name) /
00051: static const struct machine_desc __mach_desc_##_type /
00052: __attribute_used__ /
00053: __attribute__((__section__(".arch.info.init"))) = { /
00054: .nr = MACH_TYPE_##_type, /
00055: .name = _name,
00056:
00057: #define MACHINE_END /
00058: };
内核中,一般使用宏MACHINE_START来定义machine type.
对于at91, 在 arch/arm/mach-at91rm9200/board-ek.c 中:
00137: MACHINE_START(AT91RM9200EK, "Atmel AT91RM9200-EK")
00138:
00139: .phys_io = AT91_BASE_SYS,
00140: .io_pg_offst = (AT91_VA_BASE_SYS >> 18) & 0xfffc,
00141: .boot_params = AT91_SDRAM_BASE + 0x100,
00142: .timer = &at91rm9200_timer,
00143: .map_io = ek_map_io,
00144: .init_irq = ek_init_irq,
00145: .init_machine = ek_board_init,
00146: MACHINE_END
197行: r3中存储的是3b处的物理地址,而r4中存储的是3b处的虚拟地址,这里计算处物理地址和虚拟地址的差值,保存到r3中
198行: 将r5存储的虚拟地址(__arch_info_begin)转换成物理地址
199行: 将r6存储的虚拟地址(__arch_info_end)转换成物理地址
200行: MACHINFO_TYPE 在 arch/arm/kernel/asm-offset.c 101行定义, 这里是取 struct machine_desc中的nr(architecture number) 到r3中
201行: 将r3中取到的machine type 和 r1中的 machine type(见前面的"启动条件")进行比较
202行: 如果相同,说明找到了对应的machine type,跳转到207行的2f处,此时r5中存储了对应的struct machine_desc的基地址
203行: (不相同), 取下一个machine_desc的地址
204行: 和r6进行比较,检查是否到了__arch_info_end.
205行: 如果不相同,说明还有machine_desc,返回200行继续查找.
206行: 执行到这里,说明所有的machind_desc都查找完了,并且没有找到匹配的, 将r5设置成0(unknown machine).
207行: 返回
3. 创建页表
通过前面的两步,我们已经确定了processor type 和 machine type.
此时,一些特定寄存器的值如下所示:
r8 = machine info (struct machine_desc的基地址)
r9 = cpu id (通过cp15协处理器获得的cpu id)
r10 = procinfo (struct proc_info_list的基地址)
创建页表是通过函数 __create_page_tables 来实现的.
这里,我们使用的是arm的L1主页表,L1主页表也称为段页表(section page table)
L1 主页表将4 GB 的地址空间分成若干个1 MB的段(section),因此L1页表包含4096个页表项(section entry). 每个页表项是32 bits(4 bytes)
因而L1主页表占用 4096 *4 = 16k的内存空间.
对于ARM926,其L1 section entry的格式为:(可参考arm926EJS TRM):
31 20 19 12 11 10 9 8 5 4 3 2 1 0
+------------------------------+------------+-----+-+--------+-+-+-+-+-+
| | | | | | | | | | |
| Base Address | SBZ | AP |0| Domain |1|C|B|1|0|
| | | | | | | | | | |
+------------------------------+------------+-----+-+--------+-+-+-+-+-+
B - Write Buffer Bit
C - Cache Bit
+---------------------------------------------------+
| Data Cache |
+-----------+------------+--------------------------+
| Cache Bit | Buffer Bit | Page attribute |
+-----------+------------+--------------------------+
| 0 | 0 | not cached, not buffered |
+-----------+------------+--------------------------+
| 0 | 1 | not cached, buffered |
+-----------+------------+--------------------------+
| 1 | 0 | cached, writethrough |
+-----------+------------+--------------------------+
| 1 | 1 | cached, writeback |
+-----------+------------+--------------------------+
下面我们来分析 __create_page_tables 函数:
在 arch/arm/kernel/head.S 中:
00206: .type __create_page_tables, %function
00207: __create_page_tables:
00208: pgtbl r4 @ page table address
00209:
00210:
00213: mov r0, r4
00214: mov r3, #0
00215: add r6, r0, #0x4000
00216: 1: str r3, [r0], #4
00217: str r3, [r0], #4
00218: str r3, [r0], #4
00219: str r3, [r0], #4
00220: teq r0, r6
00221: bne 1b
00222:
00223: ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
00224:
00225:
00231: mov r6, pc, lsr #20 @ start of kernel section
00232: orr r3, r7, r6, lsl #20 @ flags + kernel base
00233: str r3, [r4, r6, lsl #2] @ identity mapping
00234:
00235:
00239: add r0, r4, #(TEXTADDR & 0xff000000) >> 18 @ start of kernel
00240: str r3, [r0, #(TEXTADDR & 0x00f00000) >> 18]!
00241:
00242: ldr r6, =(_end - PAGE_OFFSET - 1) @ r6 = number of sections
00243: mov r6, r6, lsr #20 @ needed for kernel minus 1
00244:
00245: 1: add r3, r3, #1 << 20
00246: str r3, [r0, #4]!
00247: subs r6, r6, #1
00248: bgt 1b
00249:
00250:
00253: add r0, r4, #PAGE_OFFSET >> 18
00254: orr r6, r7, #PHYS_OFFSET
00255: str r6, [r0]
...
00314: mov pc, lr
00315: .ltorg
206, 207行: 函数声明
208行: 通过宏 pgtbl 将r4设置成页表的基地址(物理地址)
宏pgtbl 在 arch/arm/kernel/head.S 中:
00042: .macro pgtbl, rd
00043: ldr /rd, =(__virt_to_phys(KERNEL_RAM_ADDR - 0x4000))
00044: .endm
可以看到,页表是位于 KERNEL_RAM_ADDR 下面 16k 的位置
宏 __virt_to_phys 是在incude/asm-arm/memory.h 中:
00125: #ifndef __virt_to_phys
00126: #define __virt_to_phys(x) ((x) - PAGE_OFFSET + PHYS_OFFSET)
00127: #define __phys_to_virt(x) ((x) - PHYS_OFFSET + PAGE_OFFSET)
00128: #endif
下面从213行 - 221行, 是将这16k 的页表清0.
213行: r0 = r4, 将页表基地址存在r0中
214行: 将 r3 置成0
215行: r6 = 页表基地址 + 16k, 可以看到这是页表的尾地址
216 - 221 行: 循环,从 r0 到 r6 将这16k页表用0填充.
223行: 获得proc_info_list的__cpu_mm_mmu_flags的值,并存储到 r7中. (宏PROCINFO_MM_MMUFLAGS是在arch/arm/kernel/asm-offset.c中定义)
231行: 通过pc值的高12位(右移20位),得到kernel的section,并存储到r6中.因为当前是通过运行时地址得到的kernel的section,因而是物理地址.
232行: r3 = r7 | (r6 << 20); flags + kernel base,得到页表中需要设置的值.
233行: 设置页表: mem[r4 + r6 * 4] = r3
这里,因为页表的每一项是32 bits(4 bytes),所以要乘以4(<<2).
上面这三行,设置了kernel的第一个section(物理地址所在的page entry)的页表项
239, 240行: TEXTADDR是内核的起始虚拟地址(0xc0008000), 这两行是设置kernel起始虚拟地址的页表项(注意,这里设置的页表项和上面的231 - 233行设置的页表项是不同的 )
执行完后,r0指向kernel的第2个section的虚拟地址所在的页表项.
242行: 这一行计算kernel镜像的大小(bytes).
_end 是在vmlinux.lds.S中162行定义的,标记kernel的结束位置(虚拟地址):
00158 .bss : {
00159 __bss_start = .;
00160 *(.bss)
00161 *(COMMON)
00162 _end = .;
00163 }
kernel的size = _end - PAGE_OFFSET -1, 这里减1的原因是因为 _end 是 location counter,它的地址是kernel镜像后面的一个byte的地址.
243行: 地址右移20位,计算出kernel有多少sections,并将结果存到r6中
245 - 248行: 这几行用来填充kernel所有section虚拟地址对应的页表项.
253行: 将r0设置为RAM第一兆虚拟地址的页表项地址(page entry)
254行: r7中存储的是mmu flags, 逻辑或上RAM的起始物理地址,得到RAM第一个MB页表项的值.
255行: 设置RAM的第一个MB虚拟地址的页表.
上面这三行是用来设置RAM中第一兆虚拟地址的页表. 之所以要设置这个页表项的原因是RAM的第一兆内存中可能存储着boot params.