There is sequence 1, 12, 123, 1234, ..., 12345678910, ... . Now you are given two integers A and B, you have to find the number of integers from Ath number to Bth(inclusive) number, which are divisible by 3.
For example, let A = 3. B = 5. So, the numbers in the sequence are, 123, 1234, 12345. And 123, 12345 are divisible by 3. So, the result is 2.
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains two integers A and B (1 ≤ A ≤ B < 231) in a line.
For each case, print the case number and the total numbers in the sequence between Ath and Bth which are divisible by 3.
Sample Input |
Output for Sample Input |
2 3 5 10 110 |
Case 1: 2 Case 2: 67 |
因为这个数据比较大,所以用同余定理应该会TLE,但这道题可以总结下规律
连续的三个数相加一定等于3的倍数,因为x+x+1+x+2==3(x+1),又这三个数任意两个数相加为2x+1,2x+2,2x+3,其中一定有一个数被3整除。即连续的三个数中一定有两个被3整除的数
#include<stdio.h> #include<algorithm> #include<string.h> #include<iostream> #include<cmath> #define MAXN 1000010 using namespace std; int cal(int n) { return n/3*2+(n%3==2?1:0); } int main() { int a,b; int t,cnt=1,i,j; scanf("%d",&t); while(t--) { scanf("%d%d",&a,&b); printf("Case %d: %d\n",cnt++,cal(b)-cal(a-1)); } return 0; }