Lightoj1136——Division by 3(数学)

There is sequence 1, 12, 123, 1234, ..., 12345678910, ... . Now you are given two integers A and B, you have to find the number of integers from Ath number to Bth(inclusive) number, which are divisible by 3.

For example, let A = 3. B = 5. So, the numbers in the sequence are, 123, 1234, 12345. And 123, 12345 are divisible by 3. So, the result is 2.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case contains two integers A and B (1 ≤ A ≤ B < 231) in a line.

Output

For each case, print the case number and the total numbers in the sequence between Ath and Bth which are divisible by 3.

Sample Input

Output for Sample Input

2

3 5

10 110

Case 1: 2

Case 2: 67

 

因为这个数据比较大,所以用同余定理应该会TLE,但这道题可以总结下规律

连续的三个数相加一定等于3的倍数,因为x+x+1+x+2==3(x+1),又这三个数任意两个数相加为2x+1,2x+2,2x+3,其中一定有一个数被3整除。即连续的三个数中一定有两个被3整除的数

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<cmath>
#define MAXN 1000010
using namespace std;
int cal(int n)
{
    return n/3*2+(n%3==2?1:0);
}
int main()
{
    int a,b;
    int t,cnt=1,i,j;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&a,&b);
        printf("Case %d: %d\n",cnt++,cal(b)-cal(a-1));
    }
    return 0;
}



你可能感兴趣的:(Lightoj1136——Division by 3(数学))