【题目链接】
次小生成树。。
思路比较简单,先求出最小生成树,然后枚举每条不在最小生成树上的边(u, v),求u和v路径上的最大边权和次大边权。
如果最大边权和(u, v)的边权相等,那么减去次大边的边权,加上(u, v)的边权,更新答案。
如果最大边权比(u, v)的边权要小,那么减去最大边的边权,加上(u, v)的边权,更新答案。
调了几个小时= =,注意要开LL,而且inf要开大。
/* Pigonometry */ #include <cstdio> #include <algorithm> using namespace std; typedef long long LL; const int maxn = 100005, maxm = 300005, maxk = 18; const LL inf = 1LL << 60; int n, m, head[maxn], cnt, fa[maxn], pre[maxn][maxk], mx[maxn][maxk], sx[maxn][maxk], depth[maxn]; LL sum; struct _edge { int v, w, next; } g[maxn << 1]; struct _spedge { int u, v, w; bool operator < (const _spedge &x) const { return w < x.w; } } e[maxm]; inline int iread() { int f = 1, x = 0; char ch = getchar(); for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1; for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; return f * x; } inline int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); } inline void add(int u, int v, int w) { g[cnt] = (_edge){v, w, head[u]}; head[u] = cnt++; } inline void dfs(int x) { for(int i = head[x]; ~i; i = g[i].next) if(g[i].v ^ pre[x][0]) { depth[g[i].v] = depth[x] + 1; pre[g[i].v][0] = x; mx[g[i].v][0] = g[i].w; dfs(g[i].v); } } inline void update(int &f, int &s, int m1, int s1, int m2, int s2) { if(m1 > m2) { f = m1; if(s1 > m2) s = s1; else s = m2; } else if(m1 < m2) { f = m2; if(s2 > m1) s = s2; else s = m1; } else { f = m1; if(s2 > s1) s = s2; else s = s1; } } inline LL calc(int u, int v, int w) { int f = 0, s = 0; if(depth[u] < depth[v]) swap(u, v); for(int i = maxk - 1; i >= 0; i--) if(depth[pre[u][i]] >= depth[v]) { update(f, s, mx[u][i], sx[u][i], f, s); u = pre[u][i]; } for(int i = maxk - 1; i >= 0; i--) if(pre[u][i] != pre[v][i]) { update(f, s, mx[u][i], sx[u][i], f, s); u = pre[u][i]; update(f, s, mx[v][i], sx[v][i], f, s); v = pre[v][i]; } if(u != v) { update(f, s, mx[u][0], sx[u][0], f, s); u = pre[u][0]; update(f, s, mx[v][0], sx[v][0], f, s); v = pre[v][0]; } LL res = inf; if(f == w && s != 0) res = sum - s + w; else if(w > f) res = sum - f + w; return res; } int main() { n = iread(); m = iread(); for(int i = 1; i <= m; i++) { int u = iread(), v = iread(), w = iread(); e[i] = (_spedge){u, v, w}; } sort(e + 1, e + 1 + m); for(int i = 1; i <= n; i++) head[i] = -1, fa[i] = i; cnt = 0; int tot = 0; sum = 0; for(int i = 1; i <= m && tot != n - 1; i++) { int u = find(e[i].u), v = find(e[i].v); if(u != v) { tot++; fa[u] = v; add(e[i].u, e[i].v, e[i].w); add(e[i].v, e[i].u, e[i].w); sum += e[i].w; e[i].w = -1; } } dfs(1); for(int j = 1; j < maxk; j++) for(int i = 1; i <= n; i++) { update(mx[i][j], sx[i][j], mx[i][j - 1], sx[i][j - 1], mx[pre[i][j - 1]][j - 1], sx[pre[i][j - 1]][j - 1]); pre[i][j] = pre[pre[i][j - 1]][j - 1]; } LL ans = inf; for(int i = 1; i <= m; i++) if(~e[i].w) ans = min(ans, calc(e[i].u, e[i].v, e[i].w)); printf("%lld\n", ans); return 0; }