时间复杂度计算 - 1

原帖地址:http://luoji10000.blog.163.com/blog/static/1664393822010729111950309/

时间复杂度计算 - 1

数据结构 2010-08-29 23:19:50 阅读128 评论0   字号:   订阅

学习算法的同学,如果不知道计算一个算法的时间复杂度该如何计算,其实是一件很丢脸的事情。最近选修了高级算法这门课,由于时间紧张,原本就想混过去算了,但是不料考试的时候有40%的题目是计算时间复杂度的,干脆就好好的总结一下。

概念我也不讲了,大家都清楚。关键讲讲怎么计算比较实际一点。

       求解算法的时间复杂度的具体步骤是:

  ⑴ 找出算法中的基本语句;

  算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

  ⑵ 计算基本语句的执行次数的数量级;

  只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

  ⑶ 用大Ο记号表示算法的时间性能。

  将基本语句执行次数的数量级放入大Ο记号中。

  如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

  for (i=1; i<=n; i++)
  x++;

  for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
  x++;

  第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

  常见的算法时间复杂度由小到大依次为:

  Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)

Ο(1)表 示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、 Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者 称为NP问题。

这只能基本的计算时间复杂度,具体的运行还会与硬件有关。

你可能感兴趣的:(数据结构,算法,n2,2010)