Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
Sample Output
Scenario #1:
A1
Scenario #2:
impossible
Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4
分析:
找到骑士旅行的规律,当他旅行过所有的国家,就说明可以,注意回溯!
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
struct data
{
int x,y;
} a[33];
int m,n,flag,s[110][110],v[8][2]={-2,-1,-2,1,-1,-2,-1,2,1,-2,1,2,2,-1,2,1};
void dfs(int x,int y,int z)
{
a[z].x=x; //把走过的国家赋值到结构体中
a[z].y=y;
if(z==m*n)
{
flag=1; //如果走完所有的国家,标记然后返回
return ;
}
for(int i=0; i<8; i++)
{
int x1=x+v[i][0];
int y1=y+v[i][1];
if(x1>0&&x1<=m&&y1>0&&y1<=n&&!s[x1][y1]&&!flag)
{ //如果没有越界且这个国家还没有走,也没有走完
s[x1][y1]=1;
dfs(x1,y1,z+1);//走过的国家加一
s[x1][y1]=0;// 回溯
}
}
}
int main()
{
int t,k=1;;
scanf("%d",&t);
while(t--)
{
memset(s,0,sizeof(s));
scanf("%d %d",&n,&m);
flag=0;
s[1][1]=1;
dfs(1,1,1);
printf("Scenario #%d:\n",k++);
if(flag)
{
for(int i=1; i<=m*n; i++)
printf("%c%d",a[i].x-1+'A',a[i].y);
printf("\n");
}
else
printf("impossible\n");
if(t)
printf("\n");
}
return 0;
}