HDU 3486 Interviewe (RMQ+暴力,3级)

F - Interviewe
Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
Submit Status
Appoint description: System Crawler (2013-08-21)

Description

YaoYao has a company and he wants to employ m people recently. Since his company is so famous, there are n people coming for the interview. However, YaoYao is so busy that he has no time to interview them by himself. So he decides to select exact m interviewers for this task.
YaoYao decides to make the interview as follows. First he queues the interviewees according to their coming order. Then he cuts the queue into m segments. The length of each segment is , which means he ignores the rest interviewees (poor guys because they comes late). Then, each segment is assigned to an interviewer and the interviewer chooses the best one from them as the employee.
YaoYao’s idea seems to be wonderful, but he meets another problem. He values the ability of the ith arrived interviewee as a number from 0 to 1000. Of course, the better one is, the higher ability value one has. He wants his employees good enough, so the sum of the ability values of his employees must exceed his target k (exceed means strictly large than). On the other hand, he wants to employ as less people as possible because of the high salary nowadays. Could you help him to find the smallest m?
 

Input

The input consists of multiple cases.
In the first line of each case, there are two numbers n and k, indicating the number of the original people and the sum of the ability values of employees YaoYao wants to hire (n≤200000, k≤1000000000). In the second line, there are n numbers v1, v2, …, vn (each number is between 0 and 1000), indicating the ability value of each arrived interviewee respectively.
The input ends up with two negative numbers, which should not be processed as a case.
 

Output

For each test case, print only one number indicating the smallest m you can find. If you can’t find any, output -1 instead.
 

Sample Input

        
        
        
        
11 300 7 100 7 101 100 100 9 100 100 110 110 -1 -1
 

Sample Output

        
        
        
        
3

Hint

We need 3 interviewers to help YaoYao. The first one interviews people from 1 to 3, the second interviews people from 4 to 6, and the third interviews people from 7 to 9. And the people left will be ignored. And the total value you can get is 100+101+100=301>300.
         
       思路:用个RMQ,ST算法维护,网上一摞二分的码,但实际上大部分都是错的,是数据水了才能A的,
               5 5
               2 2 2 2 7  答案是一个区间就行了
  
先给个不严谨的二分码
#include<cstring>
#include<cstdio>
#include<iostream>
#define clr(f,z) memset(f,z,sizeof(f))
#define FOR(i,a,b) for(int i=a;i<=b;++i)
#define ll(x) (1<<x)
using namespace std;
const int mm=2e5+9;
int rmq[mm][30],f[mm];
int bit[mm],n,K;
void initRMQ()
{
  bit[0]=-1;
  FOR(i,1,mm-1)bit[i]=(i&(i-1))==0?bit[i-1]+1:bit[i-1];
  FOR(i,1,n)rmq[i][0]=f[i];
  FOR(i,1,bit[n])
  for(int j=1;j+ll(i)-1<=n;++j)
    rmq[j][i]=max(rmq[j][i-1],rmq[j+ll(i-1)][i-1]);
}
int RMQ(int l,int r)
{
  int t=bit[r-l+1];
  r-=ll(t)-1;
  return max(rmq[l][t],rmq[r][t]);
}
bool ok(int x,int n)
{
  int ret=0;
  for(int i=1,j=1;j<=n;i+=x,j++)
    ret+=RMQ(i,i+x-1);
  return ret>K;
}
int getans()
{ int l=1,r=n,mid;
  if(!ok(1,n))return -1;
  //if(ok(n/3))puts("++++++");
  int ans=n;
  while(l<=r)
  {
    mid=(l+r)/2;
    if(ok(n/mid,mid)){ans=min(ans,mid);r=mid-1; }
    else l=mid+1;
  }
  return ans;
}
int main()
{
  while(~scanf("%d%d",&n,&K))
  { if(n<0&&K<0)break;
    FOR(i,1,n)
    scanf("%d",&f[i]);
    initRMQ();
    printf("%d\n",getans());
  }
  return 0;
}

在给个严谨的暴力
#include<cstring>
#include<cstdio>
#include<iostream>
#define clr(f,z) memset(f,z,sizeof(f))
#define FOR(i,a,b) for(int i=a;i<=b;++i)
#define ll(x) (1<<x)
using namespace std;
const int mm=2e5+9;
int rmq[mm][30],f[mm];
int bit[mm],n,K;
void initRMQ()
{
  bit[0]=-1;
  FOR(i,1,mm-1)bit[i]=(i&(i-1))==0?bit[i-1]+1:bit[i-1];
  FOR(i,1,n)rmq[i][0]=f[i];
  FOR(i,1,bit[n])
  for(int j=1;j+ll(i)-1<=n;++j)
    rmq[j][i]=max(rmq[j][i-1],rmq[j+ll(i-1)][i-1]);
}
int RMQ(int l,int r)
{
  int t=bit[r-l+1];
  r-=ll(t)-1;
  return max(rmq[l][t],rmq[r][t]);
}
bool ok(int x,int n)
{
  int ret=0;
  for(int i=1,j=1;j<=n;i+=x,j++)
    ret+=RMQ(i,i+x-1);
  return ret>K;
}
int getans()
{
  if(!ok(1,n))return -1;
  //if(ok(n/3))puts("++++++");
  int z=RMQ(1,n);
  int kai=(K+1)/z;
  if(kai==0)kai=1;
  FOR(i,kai,n)
  if(ok(n/i,i))
    return i;
}
int main()
{
  while(~scanf("%d%d",&n,&K))
  { if(n<0&&K<0)break;
    FOR(i,1,n)
    scanf("%d",&f[i]);
    initRMQ();
    printf("%d\n",getans());
  }
  return 0;
}

HDU 3486 Interviewe (RMQ+暴力,3级)_第1张图片
1/1
100%
HDU 3486 Interviewe (RMQ+暴力,3级)_第2张图片
1/2
50%
HDU 3486 Interviewe (RMQ+暴力,3级)_第3张图片
1/2
50%
HDU 3486 Interviewe (RMQ+暴力,3级)_第4张图片
1/1
100%
HDU 3486 Interviewe (RMQ+暴力,3级)_第5张图片
1/4
25%
HDU 3486 Interviewe (RMQ+暴力,3级)_第6张图片
1/3
33%
 
6/13
46%
HDU 3486 Interviewe (RMQ+暴力,3级)_第9张图片

你可能感兴趣的:(HDU 3486 Interviewe (RMQ+暴力,3级))