UVALive - 5908(UVA1517)Tracking RFIDs(暴力)
题目链接
题目大意:给你S个传感器,然后每个传感器的感应半径是R,有W堵墙,已经传感器的感应范围会因为碰到一堵墙而减少1,那么如果这个感应器和某个物品中间有N堵墙的话,感应范围就变为R - N。给你P个物品,要求你求出每个物品可以被哪些感应器感应到。
解题思路:因为这题的S很大,P比较小,而且传感器的位置都是整数点的,那么枚举每个产品的周围不大于R的整数点(最多2∗R∗2∗R).然后判断两点之间有没有墙用向量的差积。复杂度:10000 40 40 * 10.加上极端的数据可能没有,所以还是可以接受的。set的效率比map要快好多。
代码:
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
using namespace std;
const int N = 1e4 + 5;
typedef long long ll;
int S, R, W, P;
struct Point {
int x, y;
Point (int x = 0, int y = 0) : x(x) , y(y) {}
bool operator < (const Point &a) const {
return a.x == x ? y < a.y : x < a.x;
}
Point operator - (const Point &a) const {
Point ans;
ans.x = x - a.x;
ans.y = y - a.y;
return ans;
}
Point operator + (const Point &a) const {
Point ans;
ans.x = x + a.x;
ans.y = y + a.y;
return ans;
}
int operator ^ (const Point &a) const {
return x * a.y - y * a.x;
}
};
struct Line {
Point b, e;
void init (int bx = 0, int by = 0, int ex = 0, int ey = 0) {
b.x = bx;
b.y = by;
e.x = ex;
e.y = ey;
}
}l[15];
vector<Point> p;
set<Point> vis;
ll dis (Point a, Point b) {
ll dx = a.x - b.x;
ll dy = a.y - b.y;
return dx * dx + dy * dy;
}
bool check (Point a, Point b, Point c, Point d) {
if (min (a.x, b.x) > max (c.x, d.x) ||
min (a.y, b.y) > max (c.y, d.y) ||
min (c.x, d.x) > max (a.x, b.x) ||
min (c.y, d.y) > max (a.y, b.y))
return false;
ll i = (a - b) ^ (a - c);
ll j = (a - b) ^ (a - d);
ll k = (c - d) ^ (c - a);
ll l = (c - d) ^ (c - b);
return i * j <= 0 && k * l <= 0;
}
bool judge (Point a, Point b) {
if (vis.find(a) == vis.end())
return false;
ll d = dis (a, b);
if (d > R * R)
return false;
int cnt = 0;
for (int i = 0; i < W; i++)
if (check(a, b, l[i].b, l[i].e))
cnt++;
if (cnt > R)
return false;
return d <= (R - cnt) * (R - cnt);
}
int main () {
int T;
int x, y;
Point tmp;
scanf ("%d", &T);
while (T--) {
scanf ("%d%d%d%d", &S, &R, &W, &P);
vis.clear();
for (int i = 0; i < S; i++) {
scanf ("%d%d", &tmp.x, &tmp.y);
vis.insert (tmp);
}
int bx, by, ex, ey;
for (int i = 0; i < W; i++) {
scanf ("%d%d%d%d", &bx, &by, &ex, &ey);
l[i].init(bx, by, ex, ey);
}
Point a;
int d;
for (int i = 0; i < P; i++) {
p.clear();
scanf ("%d%d", &tmp.x, &tmp.y);
for (int j = -R; j <= R; j++) {
d = sqrt (R * R - j * j);
for (int k = max (-R, -d) ; k <= min (R, d); k++) {
a.x = tmp.x + j;
a.y = tmp.y + k;
if (judge(a, tmp))
p.push_back (a);
}
}
printf ("%d", p.size());
for (int j = 0; j < p.size(); j++)
printf (" (%d,%d)", p[j].x, p[j].y);
printf ("\n");
}
}
return 0;
}