Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { TreeNode *result = NULL; findLCA(root, p, q, &result); return result; } private: bool findNode(TreeNode *root, TreeNode *p) { if (root == NULL || p == NULL) { return false; } if (root == p) { return true; } return findNode(root->left, p) || findNode(root->right, p); } int findLCA(TreeNode *root, TreeNode *p, TreeNode *q, TreeNode **result) { if (root == NULL) { return 0; } if (root == p) { if (findNode(root, q)) { *result = root; return 2; } else { return 1; } } else if (root == q) { if (findNode(root, p)) { *result = root; return 2; } else { return 1; } } else { int left = findLCA(root->left, p, q, result); int right = 0; if (left != 2) { right = findLCA(root->right, p, q, result); } if (left == 1 && right == 1) { *result = root; } return left + right; } } };