题目大意:
有一些衣服要发给一些志愿者,每件衣服都有6个码,所以衣服的数量是6的倍数。给出每个志愿者适合的两个码,问每个志愿者是否可以匹配到衣服。
思路:
1-6表示衣服,构造一个超级源点0,一个超级汇点 7 + M,构造超级源点到6的容量是N/6,因为每个码数的衣服的数量是N/6,然后构造衣服到人的边,容量为1,因为每个人只能穿一件衣服,然后构造从人到汇点的容量为1,因为每个人只能选择一件衣服。
最后判断以下最大流是否为M,如果为M证明每个人都被匹配到了,反之就是没有。
代码:
#include <iostream>
using namespace std;
#include <stdio.h>
#include <cstring>
#include <queue>
const int MAXN = 80;
const int INF = 0x3f3f3f3f;
int c[MAXN][MAXN];
int f[MAXN][MAXN];
int mr[MAXN];
int p[MAXN];
char s[7][5] = {"","XS","S","M","L","XL","XXL"};
//char s[7][5] = {"XXL","XL","L","M","S","XS"};
int N,M;
int maxFlow(int k,int t,int num) {
queue <int> q;
memset(f,0,sizeof(f));
// memset(mr,0,sizeof(mr));
memset(p,0,sizeof(p));
int F = 0;
while(1) {
memset(mr,0,sizeof(mr));
q.push(k);
mr[k] = INF;
while(!q.empty()) {
int u = q.front();
q.pop();
for(int v = 0 ; v < num; v++) {
if(!mr[v] && c[u][v] > f[u][v]) {
p[v] = u;
q.push(v);
mr[v] = min(mr[u],c[u][v] - f[u][v]);
}
}
}
if(mr[t] == 0)
return F;
for(int i = t; i != k; i = p[i]) {
f[p[i]][i] += mr[t];
f[i][p[i]] -= mr[t];
}
F += mr[t];
}
}
int main() {
int T;
char str[5];
scanf("%d",&T);
while(T--) {
memset(c,0,sizeof(c));
scanf("%d %d",&N,&M);
//int NN = N / 6;
for(int i = 1; i <= 6; i++)
c[0][i] = N/6;
for(int i = 1; i <= M; i++){
c[6 + i][7 + M] = 1;
scanf("%s",str);
for(int j = 1; j <= 6; j++) {
if(!strcmp(str,s[j])) {
c[j][i + 6] += 1;
break;
}
}
scanf("%s",str);
for(int j = 1; j <= 6; j++) {
if(!strcmp(str,s[j])) {
c[j][i + 6] += 1;
break;
}
}
}
int x = maxFlow (0,7 + M, 8 + M);
if(x == M)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
二分图最大匹配:
#include <iostream>
using namespace std;
#include <stdio.h>
#include <cstring>
const int N = 80;
char s[7][4] = {"","XXL","XL","L","M","S","XS"};
int g[N][N];
int map[N],vis[N];
int n,m,nn;
void input() {
char s1[4],s2[4];
memset(g,0,sizeof(g));
scanf("%d %d",&n,&m);
nn = n / 6;
for(int i = 1; i <= m; i++) {
scanf("%s%s",s1,s2);
int t1,t2;
for(int j = 1; j <= 6; j++) {
if(!strcmp(s1,s[j])){
t1 = j;
break;
}
}
for(int j = 1; j <= 6; j++) {
if(!strcmp(s2,s[j])) {
t2 = j;
break;
}
}
int u,v1,v2;
u = n + i;
v1 = t1;
v2 = t2;
for(int j = 0; j < nn; j++) {
int t;
t = ++g[u][0];
g[u][t] = v1 + 6 * j;
t = ++ g[v1 + 6 * j][0];
g[v1 + 6 * j][t] = u;
t = ++ g[u][0];
g[u][t] = v2 + 6 * j;
t = ++g[v2 + 6 * j][0];
g[v2 + 6 * j][t] = u;
}
}
return ;
}
int find(int k) {
for(int i = 1; i <= g[k][0]; i++) {
int v = g[k][i];
if(!vis[v]) {
vis[v] = 1;
if(!map[v] || find(map[v])) {
map[v] = k;
return 1;
}
}
}
return 0;
}
void max_match() {
// int ans = 0;
memset(map,0,sizeof(map));
for(int i = 1; i <= n + m; i++) {
memset(vis,0,sizeof(vis));
find(i);
}
int flag = 1;
for(int i = n + 1; i <= n + m; i++) {
if(!map[i]) {
flag = 0;
break;
}
}
if(!flag)
puts("NO");
else
puts("YES");
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
input();
max_match();
}
return 0;
}