在声卡驱动中药使用到dma 的驱动,现在看看在2.6的内核下dma 的驱动架构
/* linux/arch/arm/mach-s3c2440/dma.c * * Copyright (c) 2006 Simtec Electronics * Ben Dooks <[email protected]> * * S3C2440 DMA selection * * http://armlinux.simtec.co.uk/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/sysdev.h> #include <linux/serial_core.h> #include <mach/dma.h> #include <plat/dma.h> #include <plat/cpu.h> #include <plat/regs-serial.h> #include <mach/regs-gpio.h> #include <plat/regs-ac97.h> #include <mach/regs-mem.h> #include <mach/regs-lcd.h> #include <mach/regs-sdi.h> #include <asm/plat-s3c24xx/regs-iis.h> #include <plat/regs-spi.h> static struct s3c24xx_dma_map __initdata s3c2440_dma_mappings[] = { [DMACH_XD0] = { .name = "xdreq0", .channels[0] = S3C2410_DCON_CH0_XDREQ0 | DMA_CH_VALID, }, [DMACH_XD1] = { .name = "xdreq1", .channels[1] = S3C2410_DCON_CH1_XDREQ1 | DMA_CH_VALID, }, [DMACH_SDI] = { .name = "sdi", .channels[0] = S3C2410_DCON_CH0_SDI | DMA_CH_VALID, .channels[1] = S3C2440_DCON_CH1_SDI | DMA_CH_VALID, .channels[2] = S3C2410_DCON_CH2_SDI | DMA_CH_VALID, .channels[3] = S3C2410_DCON_CH3_SDI | DMA_CH_VALID, .hw_addr.to = S3C2410_PA_IIS + S3C2410_IISFIFO, .hw_addr.from = S3C2410_PA_IIS + S3C2410_IISFIFO, }, [DMACH_SPI0] = { .name = "spi0", .channels[1] = S3C2410_DCON_CH1_SPI | DMA_CH_VALID, .hw_addr.to = S3C2410_PA_SPI + S3C2410_SPTDAT, .hw_addr.from = S3C2410_PA_SPI + S3C2410_SPRDAT, }, [DMACH_SPI1] = { .name = "spi1", .channels[3] = S3C2410_DCON_CH3_SPI | DMA_CH_VALID, .hw_addr.to = S3C2410_PA_SPI + 0x20 + S3C2410_SPTDAT, .hw_addr.from = S3C2410_PA_SPI + 0x20 + S3C2410_SPRDAT, }, [DMACH_UART0] = { .name = "uart0", .channels[0] = S3C2410_DCON_CH0_UART0 | DMA_CH_VALID, .hw_addr.to = S3C2410_PA_UART0 + S3C2410_UTXH, .hw_addr.from = S3C2410_PA_UART0 + S3C2410_URXH, }, [DMACH_UART1] = { .name = "uart1", .channels[1] = S3C2410_DCON_CH1_UART1 | DMA_CH_VALID, .hw_addr.to = S3C2410_PA_UART1 + S3C2410_UTXH, .hw_addr.from = S3C2410_PA_UART1 + S3C2410_URXH, }, [DMACH_UART2] = { .name = "uart2", .channels[3] = S3C2410_DCON_CH3_UART2 | DMA_CH_VALID, .hw_addr.to = S3C2410_PA_UART2 + S3C2410_UTXH, .hw_addr.from = S3C2410_PA_UART2 + S3C2410_URXH, }, [DMACH_TIMER] = { .name = "timer", .channels[0] = S3C2410_DCON_CH0_TIMER | DMA_CH_VALID, .channels[2] = S3C2410_DCON_CH2_TIMER | DMA_CH_VALID, .channels[3] = S3C2410_DCON_CH3_TIMER | DMA_CH_VALID, }, [DMACH_I2S_IN] = { .name = "i2s-sdi", .channels[1] = S3C2410_DCON_CH1_I2SSDI | DMA_CH_VALID, .channels[2] = S3C2410_DCON_CH2_I2SSDI | DMA_CH_VALID, .hw_addr.from = S3C2410_PA_IIS + S3C2410_IISFIFO, }, [DMACH_I2S_OUT] = { .name = "i2s-sdo", .channels[0] = S3C2440_DCON_CH0_I2SSDO | DMA_CH_VALID, .channels[2] = S3C2410_DCON_CH2_I2SSDO | DMA_CH_VALID, .hw_addr.to = S3C2410_PA_IIS + S3C2410_IISFIFO, }, [DMACH_PCM_IN] = { .name = "pcm-in", .channels[0] = S3C2440_DCON_CH0_PCMIN | DMA_CH_VALID, .channels[2] = S3C2440_DCON_CH2_PCMIN | DMA_CH_VALID, .hw_addr.from = S3C2440_PA_AC97 + S3C_AC97_PCM_DATA, }, [DMACH_PCM_OUT] = { .name = "pcm-out", .channels[1] = S3C2440_DCON_CH1_PCMOUT | DMA_CH_VALID, .channels[3] = S3C2440_DCON_CH3_PCMOUT | DMA_CH_VALID, .hw_addr.to = S3C2440_PA_AC97 + S3C_AC97_PCM_DATA, }, [DMACH_MIC_IN] = { .name = "mic-in", .channels[2] = S3C2440_DCON_CH2_MICIN | DMA_CH_VALID, .channels[3] = S3C2440_DCON_CH3_MICIN | DMA_CH_VALID, .hw_addr.from = S3C2440_PA_AC97 + S3C_AC97_MIC_DATA, }, [DMACH_USB_EP1] = { .name = "usb-ep1", .channels[0] = S3C2410_DCON_CH0_USBEP1 | DMA_CH_VALID, }, [DMACH_USB_EP2] = { .name = "usb-ep2", .channels[1] = S3C2410_DCON_CH1_USBEP2 | DMA_CH_VALID, }, [DMACH_USB_EP3] = { .name = "usb-ep3", .channels[2] = S3C2410_DCON_CH2_USBEP3 | DMA_CH_VALID, }, [DMACH_USB_EP4] = { .name = "usb-ep4", .channels[3] = S3C2410_DCON_CH3_USBEP4 | DMA_CH_VALID, }, }; static void s3c2440_dma_select(struct s3c2410_dma_chan *chan, struct s3c24xx_dma_map *map) { chan->dcon = map->channels[chan->number] & ~DMA_CH_VALID; } static struct s3c24xx_dma_selection __initdata s3c2440_dma_sel = { .select = s3c2440_dma_select, .dcon_mask = 7 << 24, .map = s3c2440_dma_mappings, .map_size = ARRAY_SIZE(s3c2440_dma_mappings), }; static struct s3c24xx_dma_order __initdata s3c2440_dma_order = { .channels = { [DMACH_SDI] = { .list = { [0] = 3 | DMA_CH_VALID, [1] = 2 | DMA_CH_VALID, [2] = 1 | DMA_CH_VALID, [3] = 0 | DMA_CH_VALID, }, }, [DMACH_I2S_IN] = { .list = { [0] = 1 | DMA_CH_VALID, [1] = 2 | DMA_CH_VALID, }, }, [DMACH_I2S_OUT] = { .list = { [0] = 2 | DMA_CH_VALID, [1] = 1 | DMA_CH_VALID, }, }, [DMACH_PCM_IN] = { .list = { [0] = 2 | DMA_CH_VALID, [1] = 1 | DMA_CH_VALID, }, }, [DMACH_PCM_OUT] = { .list = { [0] = 1 | DMA_CH_VALID, [1] = 3 | DMA_CH_VALID, }, }, [DMACH_MIC_IN] = { .list = { [0] = 3 | DMA_CH_VALID, [1] = 2 | DMA_CH_VALID, }, }, }, }; static int __init s3c2440_dma_add(struct sys_device *sysdev) { s3c2410_dma_init(); s3c24xx_dma_order_set(&s3c2440_dma_order); return s3c24xx_dma_init_map(&s3c2440_dma_sel); } static struct sysdev_driver s3c2440_dma_driver = { .add = s3c2440_dma_add, }; static int __init s3c2440_dma_init(void) { return sysdev_driver_register(&s3c2440_sysclass, &s3c2440_dma_driver); } arch_initcall(s3c2440_dma_init);
入口:
arch_initcall(s3c2440_dma_init);
DMA驱动作为系统驱动由sysdev_driver_register来向内核注册,这里只关注s3c2440_dma_driver相关的内容,即调用drive中的add方法,其他的kobject对象略过。
s3c2440_dma_add做了一系列的初始化工作。调用如下三个函数
1.s3c2410_dma_init,利用平台资源初始化dma.
主要传递的参数:
unsigned int channels:
s3c2440平台对应的DMA通道总数,为4
unsigned int irq:起始DMA中断的中断号
unsigned int stride:每通道DMA所占寄存器资源数
其中struct s3c2410_dma_chan记录dma通道信息,这个数组是针对实际的硬件信息建立的,每个硬件的dma通道唯一对应一个struct s3c2410_dma_chan的数据结构。与之对应的还有一个虚拟的dma通道,其实质是将不同dma请求源区分开来,然后用一个虚拟的通道号与之一一对应,然后与实际的dma通道通过一张map表关联起来。
2. s3c24xx_dma_order_set
首先这个函数的意义是预定一些目标板要用的dma通道,使用的是上文提到的虚拟的dma通道号。dma_order是个全局变量,其作用是记录下目标板的dma预定信息。
3.3.s3c24xx_dma_init_map
他实际是根据硬件情况为一个全局变量赋值。与前面的初始化一样,这里主要是为了统一管理plat24xx这个平台下的dma资源,所以不同的芯片必须将自己硬件有关的dma信息初始化到相应的全局变量中。再说函数之前先来关注一下struct s3c24xx_dma_map这个数据结构,他提供了dma虚拟通道与实际的dma通道直接的关联。
初始化的任务比较简单,就是
(1)建立硬件dma通道信息即:
struct s3c2410_dma_chan s3c2410_chans[S3C_DMA_CHANNELS];
(2)建立目标板虚拟dma通道与硬件的dma通道的关联:
static struct s3c24xx_dma_order *dma_order;
(3)建立芯片本身的虚拟dma通道与硬件dma通道的视图:
static struct s3c24xx_dma_selection dma_sel;
完成上述工作以后,基本的dma框架就已经建立起来了。
使用DMA功能主要涉及以下几个步骤:
1,申请DMA资源
s3c2410_dma_request
2, DMA缓冲区的申请。
dma_alloc_coherent
3,DMA队列填充,linux对DMA使用一个队列进行管理,我们在申请了DMA通道以后接下来的工作就是向DMA缓冲区中填充数据,DMA传输数据问题交由linux来处理。
s3c2410_dma_enqueue
4.dma 释放
s3c2410_dma_free