http://acm.hdu.edu.cn/showproblem.php?pid=4862
5 1 5 1 91929 1 5 2 91929 1 5 3 91929 3 3 3 333 333 333 3 3 2 333 333 333
Case 1 : 0 Case 2 : 15 Case 3 : 16 Case 4 : 18 Case 5 : -1
解题思路:
最小K路径覆盖的模型,用费用流或者KM算法解决,构造二部图,X部有N*M个节点,源点向X部每个节点连一条边,流量1,费用0,Y部有N*M个节点,每个节点向汇点连一条边,流量1,费用0,如果X部的节点x可以在一步之内到达Y部的节点y,那么就连边x->y,费用为从x格子到y格子的花费能量减去得到的能量,流量1,再在X部增加一个新的节点,表示可以从任意节点出发K次,源点向其连边,费用0,流量K,这个点向Y部每个点连边,费用0,流量1,最这个图跑最小费用最大流,如果满流就是存在解,反之不存在,最小费用的相反数就是可以获得的最大能量
11155199 | 2014-07-23 16:57:06 | Accepted | 4862 | 15MS | 292K | 4390 B | C++ |
#include <iostream> #include <cstdio> using namespace std; const int oo=1e9;//无穷大 const int maxm=1111111;//边的最大数量,为原图的两倍 const int maxn=2222;//点的最大数量 int node,src,dest,edge;//de节点数,src源点,dest汇点,edge边数 int head[maxn],p[maxn],dis[maxn],q[maxn],vis[maxn];//head链表头,p记录可行流上节点对应的反向边,dis计算距离 struct edgenode { int to;//边的指向 int flow;//边的容量 int cost;//边的费用 int next;//链表的下一条边 } edges[maxm]; void prepare(int _node,int _src,int _dest); void addedge(int u,int v,int f,int c); bool spfa(); inline int min(int a,int b) { return a<b?a:b; } inline void prepare(int _node,int _src,int _dest) { node=_node; src=_src; dest=_dest; for (int i=0; i<node; i++) { head[i]=-1; vis[i]=false; } edge=0; } void addedge(int u,int v,int f,int c) { edges[edge].flow=f; edges[edge].cost=c; edges[edge].to=v; edges[edge].next=head[u]; head[u]=edge++; edges[edge].flow=0; edges[edge].cost=-c; edges[edge].to=u; edges[edge].next=head[v]; head[v]=edge++; } bool spfa() { int i,u,v,l,r=0,tmp; for (i=0; i<node; i++) dis[i]=oo; dis[q[r++]=src]=0; p[src]=p[dest]=-1; for (l=0; l!=r; ((++l>=maxn)?l=0:1)) { //printf("**\n"); for (i=head[u=q[l]],vis[u]=false; i!=-1; i=edges[i].next) { if (edges[i].flow&&dis[v=edges[i].to]>(tmp=dis[u]+edges[i].cost)) { dis[v]=tmp; p[v]=i^1; if (vis[v]) continue; vis[q[r++]=v]=true; if (r>=maxn) r=0; } } } return p[dest]>=0; } struct note { int x,y; }; note spfaflow() { int i,ret1=0,ret2=0,delta; while (spfa()) { for (i=p[dest],delta=oo; i>=0; i=p[edges[i].to]) { delta=min(delta,edges[i^1].flow); } for (int i=p[dest]; i>=0; i=p[edges[i].to]) { edges[i].flow+=delta; edges[i^1].flow-=delta; } ret1+=delta*dis[dest]; ret2+=delta; } note ret; ret.x=ret2; ret.y=ret1; return ret; } char a[15][15]; int value[15][15]; int point[15][15]; int n,m,k; int main() { int T; scanf("%d",&T); int cas=0; while(T--) { scanf("%d%d%d%*c",&n,&m,&k); int cnt=1; for(int i=0; i<n; i++) { scanf("%s",a[i]); for(int j=0; j<m; j++) { value[i][j]=a[i][j]-'0'; point[i+1][j+1]=cnt++; } } //printf("%d\n",cnt); prepare(2*n*m+3,0,2*n*m+2); addedge(src,n*m*2+1,k,0); for(int i=1; i<=n; i++) for(int j=1; j<=m; j++) { addedge(src,point[i][j],1,0); addedge(point[i][j]+m*n,dest,1,0); addedge(n*m*2+1,n*m+point[i][j],1,0); } /*for (int i=0; i<2*n*m+3; i++) { for (int k=head[i]; k!=-1; k=edges[k].next) { if (k&1) continue; int v=edges[k].to; int f=edges[k].cost; printf("%d %d %d\n",i,v,f); } } cerr<<"---------"<<endl; */ for(int i=1; i<=n; i++) for(int j=1; j<=m; j++) { for(int x=i+1; x<=n; x++) { int temp=x-i-1; if(a[i-1][j-1]==a[x-1][j-1]) temp-=(a[x-1][j-1]-'0'); addedge(point[i][j],point[x][j]+m*n,1,temp); } for(int x=j+1; x<=m; x++) { int temp=x-j-1; if(a[i-1][j-1]==a[i-1][x-1]) temp-=(a[i-1][x-1]-'0'); addedge(point[i][j],point[i][x]+m*n,1,temp); } } /*for (int i=0; i<2*n*m+3; i++) { for (int k=head[i]; k!=-1; k=edges[k].next) { int v=edges[k].to; int f=edges[k].cost; printf("%d %d %d\n",i,v,f); } } */ note ret=spfaflow(); if(ret.x!=n*m) printf("Case %d : -1\n",++cas); else printf("Case %d : %d\n",++cas,-ret.y); } return 0; }