Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, …, N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.
For each pop sequence, print in one line “YES” if it is indeed a possible pop sequence of the stack, or “NO” if not.
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
YES
NO
NO
YES
NO
利用一个最大容量为M的栈,问你能否把1,2,3,4…N的序列调整成为样例输入中的序列形式。
有一点要注意,就是样例的第五组:1 7 6 5 4 3 2 。
1可以先出,23456入栈之后,7不能入栈了,所以是不行的
#include<bits/stdc++.h>
using namespace std;
int main()
{
int i,j,n,m,k,t,a[1200],top,b[1200];//a存放输入的排列,top指向栈顶,b为栈
while(~scanf("%d%d%d",&n,&m,&k))
{
while(k--)//数据组数
{
for(i=0;i<m;i++) scanf("%d",&a[i]);
top=0,j=0,i=1;
//i代表自然序列中考虑的值
while(j<m)
{
if(i==a[j]&&top<n)//i和a[j]相等且栈有容量
{
i++;
j++;
}
else if(top>0&&b[top]==a[j])//栈顶元素相同
{
j++;
top--;
}
else if(top<n-1&&i<=m)//入栈缓存
{
b[++top]=i;
i++;
}
else break;//其他情况一律跳出
}
//中途退出,不能完成
if(j<m) printf("NO\n");
else printf("YES\n");
}
}
return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int N=1024;
stack<int>st;
int a[N],n,m,k;
int check()
{
while(!st.empty()) st.pop();
int p=1,t;
for(int i=0;i<n;i++)
{
while(p<=a[i])
{
st.push(p);
p++;
if(st.size()>m) return 0;
}
t=st.top();
if(t!=a[i]) return 0;
st.pop();
}
return 1;
}
int main()
{
scanf("%d%d%d",&m,&n,&k);
for(int _=0;_<k;_++)
{
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
if(check()) puts("YES");
else puts("NO");
}
return 0;
}
第一种想法